Organism surfaces represent signaling sites for attraction of allies and defense against enemies. However, our understanding of these signals has been impeded by methodological limitations that have precluded direct fine-scale evaluation of compounds on native surfaces. Here, we asked whether natural products from the red macroalga Callophycus serratus act in surface-mediated defense against pathogenic microbes. Bromophycolides and callophycoic acids from algal extracts inhibited growth of Lindra thalassiae, a marine fungal pathogen, and represent the largest group of algal antifungal chemical defenses reported to date. Desorption electrospray ionization mass spectrometry (DESI-MS) imaging revealed that surface-associated bromophycolides were found exclusively in association with distinct surface patches at concentrations sufficient for fungal inhibition; DESI-MS also indicated the presence of bromophycolides within internal algal tissue. This is among the first examples of natural product imaging on biological surfaces, suggesting the importance of secondary metabolites in localized ecological interactions, and illustrating the potential of DESI-MS in understanding chemically-mediated biological processes.imaging mass spectrometry ͉ macroalga ͉ natural product ͉ surface-associated
The years 2000 through mid-2010 marked a transformational period in understanding of the biosynthesis of marine natural products. During this decade the field emerged from one largely dominated by chemical approaches to understanding biosynthetic pathways to one incorporating the full force of modern molecular biology and bioinformatics. Fusion of chemical and biological approaches yielded great advances in understanding the genetic and enzymatic basis for marine natural product biosynthesis. Progress was particularly pronounced for marine microbes, especially actinomycetes and cyanobacteria. During this single decade, both the first complete marine microbial natural product biosynthetic gene cluster sequence was released as well as the first entire genome sequence for a secondary metabolite-rich marine microbe. The decade also saw tremendous progress in recognizing the key role of marine microbial symbionts of invertebrates in natural product biosynthesis. Application of genetic and enzymatic knowledge led to genetic engineering of novel “unnatural” natural products during this time, as well as opportunities for discovery of novel natural products through genome mining. The current review highlights selected seminal studies from 2000 through to June 2010 that illustrate breakthroughs in understanding of marine natural product biosynthesis at the genetic, enzymatic, and small-molecule natural product levels. A total of 154 references are cited.
The use of genome sequences has become routine in guiding the discovery and identification of microbial natural products and their biosynthetic pathways. In silico prediction of molecular features, such as metabolic building blocks, physico-chemical properties or biological functions, from orphan gene clusters has opened up the characterization of many new chemo- and genotypes in genome mining approaches. Here, we guided our genome mining of two predicted enediyne pathways in Salinispora tropica CNB-440 by a DNA interference bioassay to isolate DNA-targeting enediyne polyketides. An organic extract of S. tropica showed DNA-interference activity that surprisingly was not abolished in genetic mutants of the targeted enediyne pathways, ST_pks1 and spo. Instead we showed that the product of the orphan type II polyketide synthase pathway, ST_pks2, is solely responsible for the DNA-interfering activity of the parent strain. Subsequent comparative metabolic profiling revealed the lomaiviticins, glycosylated diazofluorene polyketides, as the ST_pks2 products. This study marks the first report of the 59 open reading frame lomaiviticin gene cluster (lom) and supports the biochemical logic of their dimeric construction via a pathway related to the kinamycin monomer.
Callophycoic acids A-H (1-8) and callophycols A and B (9 and 10) were isolated from extracts of the Fijian red alga Callophycus serratus, and identified by NMR, X-ray, and mass spectral analyses. These natural products represent four novel carbon skeletons, providing the first examples of diterpene-benzoic acids and diterpene-phenols in macroalgae. Compounds 1-10 exhibited antibacterial, antimalarial, and anticancer activity, although they are less bioactive than diterpene-benzoate macrolides previously isolated from this red alga.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.