Temperature‐based degree‐day models describe insect seasonality and to predict key phenological events. We expand on the use of a temperature‐based process defining timing of reproduction through the incorporation of female reproductive physiology for the invasive pentatomid species Halyomorpha halys, the brown marmorated stink bug. A five‐stage ranking system based on ovary development was able to distinguish between the reproductive statuses of field‐collected females. Application of this ranking method described aspects of H. halys’ seasonality, overwintering biology, and phenology across geographic locations. Female H. halys were collected in the US from NJ, WV, NC, OR, and two sites in PA in 2006–2008 (Allentown, PA only) and 2012–2014. Results identify that H. halys enters reproductive diapause in temperate locations in the fall and that a delay occurs in developmental maturity after diapause termination in the spring. Modification of the Snyder method to identify biofix determined 12.7‐hr photoperiod as the best fit to define initiation of reproduction in the spring. Applying the biofix, we demonstrated significant differences between locations for the rate at which the overwintering generation transition into reproductive status and the factors contributing to this difference require further study. For example, after including abiotic variables influencing development such as temperature and photoperiod (critical diapause cue), reproduction occurred earlier in OR and for an extended period in NJ. This data describe a method to investigate insect seasonality by incorporating physiological development across multiple regions that can clarify phenology for insects with overlapping generations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.