Base is the most commonly used activator of persulfate for the treatment of contaminated groundwater by in situ chemical oxidation (ISCO). A mechanism for the base activation of persulfate is proposed involving the base-catalyzed hydrolysis of persulfate to hydroperoxide anion and sulfate followed by the reduction of another persulfate molecule by hydroperoxide. Reduction by hydroperoxide decomposes persulfate into sulfate radical and sulfate anion, and hydroperoxide is oxidized to superoxide. The base-catalyzed hydrolysis of persulfate was supported by kinetic analyses of persulfate decomposition at various base:persulfate molar ratios and an increased rate of persulfate decomposition in D(2)O vs H(2)O. Stoichiometric analyses confirmed that hydroperoxide reacts with persulfate in a 1:1 molar ratio. Addition of hydroperoxide to basic persulfate systems resulted in rapid decomposition of the hydroperoxide and persulfate and decomposition of the superoxide probe hexachloroethane. The presence of superoxide was confirmed with scavenging by Cu(II). Electron spin resonance spectroscopy confirmed the generation of sulfate radical, hydroxyl radical, and superoxide. The results of this research are consistent with the widespread reactivity reported for base-activated persulfate when it is used for ISCO.
The activation of persulfate by phenols was investigated to further the understanding of persulfate chemistry for in situ chemical oxidation (ISCO). Phenol (pKa = 10.0) activated persulfate at pH 12 but not at pH 8, suggesting activation occurred only via the phenoxide form. Evaluation of the phenoxide activation mechanism was complicated by the concurrent activation of persulfate by hydroperoxide anion, which is generated by the base catalyzed hydrolysis of persulfate. Therefore, phenoxide activation was investigated using pentachlorophenoxide at pH 8.3, midway between the pKa of pentachlorophenol (pKa = 4.8) and that of hydrogen peroxide (pKa = 11.8). Of the two possible mechanisms for phenoxide activation of persulfate (reduction or nucleophilic attack) the results were consistent with reduction of persulfate by phenoxide with oxidation of the phenoxide. The concentration of phenoxide required for maximum persulfate activation was low (1 mM). The results of this research document that phenoxides activate persulfate via reduction; phenolic moieties ubiquitous to soil organic matter in the subsurface may have a significant role in the activation of persulfate during its injection into the subsurface for ISCO. Furthermore, the results provide the foundation for activation of persulfate by other organic anions without the toxicity of phenols, such as keto acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.