A(1) adenosine receptors inhibit adenylate cyclase by activating G(i)/G(o), whereas A(2A) receptors activate G(s). We examined how regions of A(1) and A(2A) receptors regulate coupling to G-proteins by constructing chimaeras in which the third intracellular loops (3ICL or L) and/or the C-termini (or T) were switched. Pertussis toxin (PTX) was used in membrane radioligand binding assays to calculate the fraction of recombinant receptors coupled to G(i)/G(o) and in whole cells to differentially influence agonist-stimulated cAMP accumulation. Switching A(1)/A(2A) 3ICL domains results in receptors that maintain binding selectivity for ligands but are doubly coupled. Receptor chimaeras with an A(1) 3ICL sequence (A(2A)/A(1)L or A(2A)/A(1)LT) respond to agonist stimulation with elevated cAMP despite being coupled predominantly to G(i)/G(o). These chimaeras have basal cAMP levels lower than those of wild-type A(2A) receptors, similar to wild-type A(1) receptors. The A(1) C-terminus modulates the coupling of receptors with A(1) 3ICL such that A(2A)/A(1)LT is better coupled to G(i)/G(o) than A(2A)/A(1)L. The C-terminus has little impact on coupling to receptors containing A(2A) 3ICL sequence. Our results show that the C-terminus sequence selectively facilitates coupling to G(i)/G(o) mediated by A(1) 3ICL and not by other intracellular domains that favour G(i) coupling. The C-terminus sequence has little or no effect on coupling to G(s). For doubly G(s)/G(i)-coupled adenosine receptors in HEK-293 cells, G(s)-mediated stimulation predominates over G(i)/G(o)-mediated inhibition of adenylate cyclase. We discuss the signalling consequences of simultaneously activating opposing G-proteins within single cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.