Summary Dispersal is a key step in land plant life cycles, usually via formation of spores or seeds. Regulation of spore‐ or seed‐germination allows control over the timing of transition from one generation to the next, enabling plant dispersal. A combination of environmental and genetic factors determines when seed germination occurs. Endogenous hormones mediate this decision in response to the environment. Less is known about how spore germination is controlled in earlier‐evolving nonseed plants.Here, we present an in‐depth analysis of the environmental and hormonal regulation of spore germination in the model bryophyte Physcomitrella patens (Aphanoregma patens).Our data suggest that the environmental signals regulating germination are conserved, but also that downstream hormone integration pathways mediating these responses in seeds were acquired after the evolution of the bryophyte lineage. Moreover, the role of abscisic acid and diterpenes (gibberellins) in germination assumed much greater importance as land plant evolution progressed.We conclude that the endogenous hormone signalling networks mediating germination in response to the environment may have evolved independently in spores and seeds. This paves the way for future research about how the mechanisms of plant dispersal on land evolved.
During meiosis, DNA double-strand breaks (DSBs) occur throughout the genome, a subset of which are repaired to form reciprocal crossovers between chromosomes. Crossovers are essential to ensure balanced chromosome segregation and to create new combinations of genetic variation. Meiotic DSBs are formed by a topoisomerase-VI-like complex, containing catalytic (e.g. SPO11) proteins and auxiliary (e.g. PRD3) proteins. Meiotic DSBs are formed in chromatin loops tethered to a linear chromosome axis, but the interrelationship between DSB-promoting factors and the axis is not fully understood. Here, we study the localisation of SPO11-1 and PRD3 during meiosis, and investigate their respective functions in relation to the chromosome axis. Using immunocytogenetics, we observed that the localisation of SPO11-1 overlaps relatively weakly with the chromosome axis and RAD51, a marker of meiotic DSBs, and that SPO11-1 recruitment to chromatin is genetically independent of the axis. In contrast, PRD3 localisation correlates more strongly with RAD51 and the chromosome axis. This indicates that PRD3 likely forms a functional link between SPO11-1 and the chromosome axis to promote meiotic DSB formation. We also uncovered a new function of SPO11-1 in the nucleation of the synaptonemal complex protein ZYP1. We demonstrate that chromosome co-alignment associated with ZYP1 deposition can occur in the absence of DSBs, and is dependent on SPO11-1, but not PRD3. Lastly, we show that the progression of meiosis is influenced by the presence of aberrant chromosomal connections, but not by the absence of DSBs or synapsis. Altogether, our study provides mechanistic insights into the control of meiotic DSB formation and reveals diverse functional interactions between SPO11-1, PRD3 and the chromosome axis.
The RTR (RecQ/Top3/Rmi1) complex has been elucidated as essential for ensuring genome stability in eukaryotes. Fundamental for the dissolution of Holliday junction (HJ)-like recombination intermediates, the factors have been shown to play further, partly distinct roles in DNA repair and homologous recombination. Across all kingdoms, disruption of this complex results in characteristic phenotypes including hyper-recombination and sensitivity to genotoxins. The type IA topoisomerase TOP3a has been shown as essential for viability in various animals. In contrast, in the model plant species Arabidopsis, the top3a mutant is viable. rmi1 mutants are deficient in the repair of DNA damage. Moreover, as opposed to other eukaryotes, TOP3a and RMI1 were found to be indispensable for proper meiotic progression, with mutants showing severe meiotic defects and sterility. We now established mutants of both TOP3a and RMI1 in tomato using CRISPR/Cas technology. Surprisingly, we found phenotypes that differed dramatically from those of Arabidopsis: the top3a mutants proved to be embryo-lethal, implying an essential role of the topoisomerase in tomato. In contrast, no defect in somatic DNA repair or meiosis was detectable for rmi1 mutants in tomato. This points to a differentiation of function of RTR complex partners between plant species. Our results indicate that there are relevant differences in the roles of basic factors involved in DNA repair and meiosis within dicotyledons, and thus should be taken as a note of caution when generalizing knowledge regarding basic biological processes obtained in the model plant Arabidopsis for the entire plant kingdom.
23Plants live in close association with microorganisms that can have beneficial or detrimental 24 effects. The activity of bacteria in association with flowering plants has been extensively 25analysed. Bacteria use quorum-sensing as a way of monitoring their population density and 26interacting with their environment. A key group of quorum sensing molecules in Gram-27 negative bacteria are the N-acylhomoserine lactones (AHLs), which are known to affect the 28 growth and development of both flowering plants, including crops, and marine algae. Thus, 29AHLs have potentially important roles in agriculture and aquaculture. Nothing is known about 30 the effects of AHLs on the earliest-diverging land plants, thus the evolution of AHL-mediated 31 bacterial-plant-and algal interactions is unknown. In this paper, we show that AHLs can affect 32 spore germination in a representative of the earliest plants on land, the Bryophyte moss 33Physcomitrella patens. Furthermore, we demonstrate that sporophytes of wild isolates of 34Physcomitrella patens are associated with AHL-producing bacteria. 35 36
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.