RNA helicase A (RHA), a member of the DEXH box helicase family of proteins, is an integral component of protein complexes that regulate transcription and splicing. The EWS-FLI1 oncoprotein is expressed as a result of the chromosomal translocation t(11;22) that occurs in patients with the Ewing's sarcoma family of tumors (ESFT). Using phage display library screening, we identified an EWS-FLI1 binding peptide containing homology to RHA. ESFT cell lines and patient tumors highly expressed RHA. GST pull-down and ELISA assays showed that EWS-FLI1 specifically bound RHA fragment amino acids 630 to 1020, which contains the peptide region discovered by phage display. Endogenous RHA was identified in a protein complex with EWS-FLI1 in ESFT cell lines. Chromatin immunoprecipitation experiments showed both EWS-FLI1 and RHA bound to EWS-FLI1 target gene promoters. RHA stimulated the transcriptional activity of EWS-FLI1 regulated promoters, including Id2, in ESFT cells. In addition, RHA expression in mouse embryonic fibroblast cells stably transfected with EWS-FLI1 enhanced the anchorageindependent phenotype above that with EWS-FLI1 alone. These results suggest that RHA interacts with EWS-FLI1 as a transcriptional cofactor to enhance its function. (Cancer Res 2006; 66(11): 5574-81)
Ewing's Sarcoma family tumors (ESFT) are characterized by a translocation t(11:22) forming an aberrant transcription factor EWS-FLI1. Protein tyrosine phosphatase L1 (PTPL1) was identified as a gene upregulated by EWS-FLI1 in transfected cells by microarray. Our results show that PTPL1 is a transcriptional target of EWS-FLI1 both by chromatin immunoprecipitation and promoter activation studies. We demonstrate that PTPL1 is highly expressed in ESFT cells and patient tumors compared with normal tissues, with a trend towards higher expression in metastatic versus primary tumors. Reduction of PTPL1 protein in ESFT cells correlated with a significant reduction in both monolayer and soft-agar cell growth. In addition, these PTPL1-reduced cells were more sensitive to etoposide-induced apoptosis than the controls. We therefore report a novel transcriptional activation of a phosphatase involved in the oncogenesis of ESFT. Increasing interest in specific phosphatase inhibitors would allow PTPL1 to be evaluated as a therapeutic target in ESFT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.