Transmission spectroscopy 1,2,3 of exoplanets has revealed signatures of water vapor, aerosols, and alkali metals in a few dozen exoplanet atmospheres 4,5 . However, these previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the observations' relatively narrow wavelength range and spectral resolving power, which precluded the unambiguous identification of other chemical species -in particular the primary carbon-bearing molecules 6,7 . Here we report a broad-wavelength 0.5-5.5 µm atmospheric transmission spectrum of WASP39 b 8 , a 1200 K, roughly Saturn-mass, Jupiter-radius exoplanet, measured with JWST NIRSpec's PRISM mode 9 as part of the JWST Transiting Exoplanet Community Early Release Science Team program 10,11,12 . We robustly detect multiple chemical species at high significance, including Na (19σ), H 2 O (33σ), CO 2 (28σ), and CO (7σ). The non-detection of CH 4 , combined with a strong CO 2 feature, favours atmospheric models with a super-solar atmospheric metallicity. An unanticipated absorption feature at 4µm is best explained by SO 2 (2.7σ), which could be a tracer of atmospheric photochemistry. These observations demonstrate JWST's sensitivity to a rich diversity of exoplanet compositions and chemical processes.We observed one transit of WASP-39b on 10 July 2022 with JWST's Near InfraRed Spectrograph (NIRSpec) 9,13 , using the PRISM mode, as part of the JWST Transiting Exoplanet Community Early Release Science Program (ERS Program 1366) (PIs: N. Batalha, J. Bean, K. Stevenson) 10,11 . These observations cover the 0.5-5.5µm wavelength range at a native resolving power of R = λ/∆λ ∼ 20-300. WASP-39b was selected for this JWST ERS Program due to previous space-and ground-based observations revealing strong alkali metal absorption and multiple prominent H 2 O bands 4,6,14,15,16 , suggesting strong signal-to-noise could be obtained with JWST. However, the limited wavelength range of existing transmission spectra (0.3-1.65µm, combined with two wide photometric Spitzer channels at 3.6 and 4.5µm) left several important questions unresolved. Previous estimates of WASP-39b's atmospheric metallicity-a measure of the relative abundance of all gases heavier than hydrogen or helium-vary by four orders of magnitude 6,16,17,18,19,20 . Accurate determinations of metallicity can elucidate formation pathways and provide greater insight into the planet's history 21 . The JWST NIRSpec PRISM observations we present here offer a more detailed view into WASP-39b's atmospheric composition than has previously been possible (see ref. 21 for an initial infrared analysis of this data).We obtained time-series spectroscopy over 8.23 hours centered around the transit event to extract the wavelength-dependent absorption by the planet's atmosphere-i.e., the transmission spectrum, which probes the planet's day-night terminator region near millibar pressures. We used NIRSpec PRISM in Bright Object Time Series (BOTS) mode. WASP-39 is a bright, nearby, relatively inactive 23 G7 type star with an effective tempe...
Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.
Lava worlds belong to a class of short orbital period planets reaching dayside temperatures high enough to melt their silicate crust. Theory predicts that the resulting lava oceans outgas their volatile components, attaining equilibrium with the overlying vapour. This creates a tenuous, silicate-rich atmosphere that may be confined to the permanent dayside of the planet. The James Webb Space Telescope (JWST) will provide the much needed sensitivity and spectral coverage to characterise these worlds. In this paper, we assess the observability of characterisable spectral features by self-consistently modelling silicate atmospheres for all the currently confirmed targets having sufficient -stellar temperatures (>1500 K). To achieve this we used outgassed equilibrium chemistry and radiative transfer methods to compute temperature–pressure profiles, atmospheric chemical compositions, and emission spectra. We explore varying melt compositions, free of highly volatile elements, accounting for possible atmospheric evolution. Our models include a large number of neutral and ionic species, as well as all up-to-date opacities. The results indicate that SiO and SiO2 infrared features are the best unique identifiers of silicate atmospheres, which are detectable using the MIRI instrument of JWST. Detection of these two species in emission would allow for strong constraints on the atmospheric thermal structure and possibly the composition of the melt. We also propose that certain species, for example TiO, may be directly tied to different classes of melts, possibly revealing surface and interior dynamics. Currently, there are nearly a dozen confirmed lava planets ideal for characterisation of silicate atmospheres using JWST, with two of these already accepted for the initial General Observers programme.
Context. Ultra-hot Jupiters have dayside temperatures at which most molecules are expected to thermally dissociate. The dissociation of water vapour results in the production of the hydroxyl radical (OH). While OH absorption is easily observed in near-infrared spectra of M dwarfs, which have similar effective temperatures as ultra-hot Jupiters, it is often not considered when studying the atmospheres of ultra-hot Jupiters. Ground-based high-resolution spectroscopy during the primary transit is a powerful tool for detecting molecular absorption in these planets. Aims. We aim to assess the presence and detectability of OH in the atmosphere of the ultra-hot Jupiter WASP-76b. Methods. We use high-resolution spectroscopic observations of a transit of WASP-76b obtained using CARMENES. After validating the OH line list, we generate model transit spectra of WASP-76b with petitRADTRANS. The data are corrected for stellar and telluric contamination and cross-correlated with the model spectra. After combining all cross-correlation functions from the transit, a detection map is constructed. Constraints on the planet properties from the OH absorption are obtained from a Markov chain Monte Carlo analysis. Results. OH is detected in the atmosphere of WASP-76b with a peak signal-to-noise ratio of 6.1. From the retrieval we obtain Kp = 232 ± 12 km s−1 and a blueshift of − 13.2 ± 1.6 km s−1, which are offset from the expected velocities. Considering the fast spin rotation of the planet, the blueshift is best explained with the signal predominantly originating from the evening terminator and the presence of a strong dayside-to-nightside wind. The increased Kp over its expected value (196.5 km s−1) is, however, a bit puzzling. The signal is found to be broad, with a full width at half maximum of 16.8−4.0+4.6 km s−1. The retrieval results in a weak constraint on the mean temperature of 2700–3700 K at the pressure range of the OH signal. Conclusions. We show that OH is readily observable in the transit spectra of ultra-hot Jupiters. Studying this molecule can provide insights into the molecular dissociation processes in the atmospheres of such planets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.