We explore the chemistry and observability of nitrogen dominated atmospheres for ultra-short-period super-Earths. We base the assumption, that super-Earths could have nitrogen filled atmospheres, on observations of 55 Cnc e that favour a scenario with a high-mean-molecular-weight atmosphere. We take Titan's elemental budget as our starting point and using chemical kinetics compute a large range of possible compositions for a hot super-Earth. We use analytical temperature profiles and explore a parameter space spanning orders of magnitude in C/O & N/O ratios, while always keeping nitrogen the dominant component. We generate synthetic transmission and emission spectra and assess their potential observability with the future James Webb Space Telescope and ARIEL. Our results suggest that HCN is a strong indicator of a high C/O ratio, which is similar to what is found for H-dominated atmospheres. We find that these worlds are likely to possess C/O > 1.0, and that HCN, CN, CO should be the primary molecules to be searched for in thermal emission. For lower temperatures (T < 1500 K), we additionally find NH 3 in high N/O ratio cases, and C 2 H 4 , CH 4 in low N/O ratio cases to be strong absorbers. Depletion of hydrogen in such atmospheres would make CN, CO and NO exceptionally prominent molecules to look for in the 0.6 -5.0 µm range. Our models show that the upcoming JWST and ARIEL missions will be able to distinguish atmospheric compositions of ultra-short period super-Earths with unprecedented confidence.
Lava worlds belong to a class of short orbital period planets reaching dayside temperatures high enough to melt their silicate crust. Theory predicts that the resulting lava oceans outgas their volatile components, attaining equilibrium with the overlying vapour. This creates a tenuous, silicate-rich atmosphere that may be confined to the permanent dayside of the planet. The James Webb Space Telescope (JWST) will provide the much needed sensitivity and spectral coverage to characterise these worlds. In this paper, we assess the observability of characterisable spectral features by self-consistently modelling silicate atmospheres for all the currently confirmed targets having sufficient -stellar temperatures (>1500 K). To achieve this we used outgassed equilibrium chemistry and radiative transfer methods to compute temperature–pressure profiles, atmospheric chemical compositions, and emission spectra. We explore varying melt compositions, free of highly volatile elements, accounting for possible atmospheric evolution. Our models include a large number of neutral and ionic species, as well as all up-to-date opacities. The results indicate that SiO and SiO2 infrared features are the best unique identifiers of silicate atmospheres, which are detectable using the MIRI instrument of JWST. Detection of these two species in emission would allow for strong constraints on the atmospheric thermal structure and possibly the composition of the melt. We also propose that certain species, for example TiO, may be directly tied to different classes of melts, possibly revealing surface and interior dynamics. Currently, there are nearly a dozen confirmed lava planets ideal for characterisation of silicate atmospheres using JWST, with two of these already accepted for the initial General Observers programme.
K2-141 b is a transiting, small (1.5 R⊕) ultra-short-period (USP) planet discovered by the Kepler space telescope orbiting a K-dwarf host star every 6.7 h. The planet's high surface temperature of more than 2000 K makes it an excellent target for thermal emission observations. Here we present 65 h of continuous photometric observations of K2-141 b collected with Spitzer's Infrared Array Camera (IRAC) Channel 2 at 4.5 μm spanning ten full orbits of the planet. We measured an infrared eclipse depth of ${f_{{{\rm{p}} \mathord{\left/ {\vphantom {{\rm{p}} {{{\rm{f}}_{\rm{*}}}}}} \right. \kern-\nulldelimiterspace} {{{\rm{f}}_{\rm{*}}}}}}} = 142.9_{ - 39.0}^{38.5}$ ppm and a peak to trough amplitude variation of $A = 120.6_{ - 43.0}^{42.3}$ ppm. The best fit model to the Spitzer data shows no significant thermal hotspot offset, in contrast to the previously observed offset for the well-studied USP planet 55 Cnc e. We also jointly analyzed the new Spitzer observations with the photometry collected by Kepler during two separate K2 campaigns. We modeled the planetary emission with a range of toy models that include a reflective and a thermal contribution. With a two-temperature model, we measured a dayside temperature of ${T_{{\rm{p,d}}}} = 2049_{ - 359}^{362}$ K and a night-side temperature that is consistent with zero (Tp,n < 1712 K at 2σ). Models with a steep dayside temperature gradient provide a better fit to the data than a uniform dayside temperature (ΔBIC = 22.2). We also found evidence for a nonzero geometric albedo ${A_{\rm{g}}} = 0.282_{ - 0.078}^{0.070}$. We also compared the data to a physically motivated, pseudo-2D rock vapor model and a 1D turbulent boundary layer model. Both models fit the data well. Notably, we found that the optical eclipse depth can be explained by thermal emission from a hot inversion layer, rather than reflected light. A thermal inversion may also be responsible for the deep optical eclipse observed for another USP, Kepler-10 b. Finally, we significantly improved the ephemerides for K2-141 b and c, which will facilitate further follow-up observations of this interesting system with state-of-the-art observatories such as James Webb Space Telescope.
We show that in extremely irradiated atmospheres of hot super-Earths shortwave absorption of CN can cause strong temperature inversions. We base this study on previous observations of 55 Cancri e, which lead us to believe that ultra-short-period super-Earths can sustain volatile atmospheres, rich in nitrogen and/or carbon. We compute our model atmospheres in a radiative-convective equilibrium for a variety of nitrogen-rich cases and orbital parameters. We demonstrate the effects caused by thermal inversions on the chemistry and compute low resolution synthetic emission spectra for a range of 0.5 - 28 ${\rm \mu m}$. Our results indicate that due to shortwave absorption of CN, atmospheres with temperatures above 2000 K and C/O ≥ 1.0 are prone to thermal inversions. CN is one of the few molecules that is extremely stable at large temperatures occurring on the day side of short period super-Earths. The emission spectrum of such atmospheres will differ substantially from non-inverted cases. In the case of inversions, absorption features become inverted, showing higher than expected flux. We propose that inversions in hot atmospheres should be the expected norm. Hot super-Earths are some of the most extreme natural laboratories for testing predictions of atmospheric chemistry and structure. They are frequently occurring, bright in emission and have short orbital periods. All these factors make them perfect candidates to be observed with JWST and ARIEL missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.