Transmission spectroscopy 1,2,3 of exoplanets has revealed signatures of water vapor, aerosols, and alkali metals in a few dozen exoplanet atmospheres 4,5 . However, these previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the observations' relatively narrow wavelength range and spectral resolving power, which precluded the unambiguous identification of other chemical species -in particular the primary carbon-bearing molecules 6,7 . Here we report a broad-wavelength 0.5-5.5 µm atmospheric transmission spectrum of WASP39 b 8 , a 1200 K, roughly Saturn-mass, Jupiter-radius exoplanet, measured with JWST NIRSpec's PRISM mode 9 as part of the JWST Transiting Exoplanet Community Early Release Science Team program 10,11,12 . We robustly detect multiple chemical species at high significance, including Na (19σ), H 2 O (33σ), CO 2 (28σ), and CO (7σ). The non-detection of CH 4 , combined with a strong CO 2 feature, favours atmospheric models with a super-solar atmospheric metallicity. An unanticipated absorption feature at 4µm is best explained by SO 2 (2.7σ), which could be a tracer of atmospheric photochemistry. These observations demonstrate JWST's sensitivity to a rich diversity of exoplanet compositions and chemical processes.We observed one transit of WASP-39b on 10 July 2022 with JWST's Near InfraRed Spectrograph (NIRSpec) 9,13 , using the PRISM mode, as part of the JWST Transiting Exoplanet Community Early Release Science Program (ERS Program 1366) (PIs: N. Batalha, J. Bean, K. Stevenson) 10,11 . These observations cover the 0.5-5.5µm wavelength range at a native resolving power of R = λ/∆λ ∼ 20-300. WASP-39b was selected for this JWST ERS Program due to previous space-and ground-based observations revealing strong alkali metal absorption and multiple prominent H 2 O bands 4,6,14,15,16 , suggesting strong signal-to-noise could be obtained with JWST. However, the limited wavelength range of existing transmission spectra (0.3-1.65µm, combined with two wide photometric Spitzer channels at 3.6 and 4.5µm) left several important questions unresolved. Previous estimates of WASP-39b's atmospheric metallicity-a measure of the relative abundance of all gases heavier than hydrogen or helium-vary by four orders of magnitude 6,16,17,18,19,20 . Accurate determinations of metallicity can elucidate formation pathways and provide greater insight into the planet's history 21 . The JWST NIRSpec PRISM observations we present here offer a more detailed view into WASP-39b's atmospheric composition than has previously been possible (see ref. 21 for an initial infrared analysis of this data).We obtained time-series spectroscopy over 8.23 hours centered around the transit event to extract the wavelength-dependent absorption by the planet's atmosphere-i.e., the transmission spectrum, which probes the planet's day-night terminator region near millibar pressures. We used NIRSpec PRISM in Bright Object Time Series (BOTS) mode. WASP-39 is a bright, nearby, relatively inactive 23 G7 type star with an effective tempe...
Aims. We search for signs of falling evaporating bodies (FEBs, also known as exocomets) in photometric time series obtained for β Pictoris after fitting and removing its δ Scuti-type pulsation frequencies.Methods. Using photometric data obtained by the TESS satellite we determined the pulsational properties of the exoplanet host star β Pictoris through frequency analysis. We then pre-whitened the 54 identified δ Scuti p-modes and investigated the residual photometric time series for the presence of FEBs. Results. We identify three distinct dipping events in the light curve of β Pictoris over a 105-day period. These dips have depths from 0.5 to 2 millimagnitudes and durations of up to 2 days for the largest dip. These dips are asymmetric in nature and are consistent with a model of an evaporating comet with an extended tail crossing the disc of the star. Conclusions. We present the first broadband detections of exocomets crossing the disc of β Pictoris, complementing the predictions made 20 years earlier by Lecavelier Des . No periodic transits are seen in this time series. These observations confirm the spectroscopic detection of exocomets in calcium H and K lines that have been seen in high resolution spectroscopy.
We present the discovery and validation of a three-planet system orbiting the nearby (31.1 pc) M2 dwarf star TOI-700 (TIC 150428135). TOI-700 lies in the TESS continuous viewing zone in the Southern Ecliptic Hemisphere; observations spanning 11 sectors reveal three planets with radii ranging from 1 R ⊕ to 2.6 R ⊕ and orbital periods ranging from 9.98 to 37.43 days. Ground-based follow-up combined with diagnostic vetting and validation tests enable us to rule out common astrophysical false-positive scenarios and validate the system of planets. The outermost planet, TOI-700 d, has a radius of 1.19 ± 0.11 R ⊕ and resides in the conservative habitable zone of its host star, where it receives a flux from its star that is approximately 86% of the Earth's insolation. In contrast to some other low-mass stars that host Earth-sized planets in their habitable zones, TOI-700 exhibits low levels of stellar activity, presenting a valuable opportunity to study potentially-rocky planets over a wide range of conditions affecting atmospheric escape. While atmospheric characterization of TOI-700 d with the James Webb Space Telescope (JWST) will be challenging, the larger sub-Neptune, TOI-700 c (R = 2.63 R ⊕), will be an excellent target for JWST and beyond. TESS is scheduled to return to the Southern Hemisphere and observe TOI-700 for an additional 11 sectors in its extended mission, which should provide further constraints on the known planet parameters and searches for additional planets and transit timing variations in the system.
Seven rocky planets orbit the nearby dwarf star TRAPPIST-1, providing a unique opportunity to search for atmospheres on small planets outside the Solar System1. Thanks to the recent launch of the James Webb Space Telescope (JWST), possible atmospheric constituents such as carbon dioxide (CO2) are now detectable2,3. Recent JWST observations of the innermost planet TRAPPIST-1 b showed that it is most probably a bare rock without any CO2 in its atmosphere4. Here we report the detection of thermal emission from the dayside of TRAPPIST-1 c with the Mid-Infrared Instrument (MIRI) on JWST at 15 µm. We measure a planet-to-star flux ratio of fp/f⁎ = 421 ± 94 parts per million (ppm), which corresponds to an inferred dayside brightness temperature of 380 ± 31 K. This high dayside temperature disfavours a thick, CO2-rich atmosphere on the planet. The data rule out cloud-free O2/CO2 mixtures with surface pressures ranging from 10 bar (with 10 ppm CO2) to 0.1 bar (pure CO2). A Venus-analogue atmosphere with sulfuric acid clouds is also disfavoured at 2.6σ confidence. Thinner atmospheres or bare-rock surfaces are consistent with our measured planet-to-star flux ratio. The absence of a thick, CO2-rich atmosphere on TRAPPIST-1 c suggests a relatively volatile-poor formation history, with less than $${9.5}_{-2.3}^{+7.5}$$ 9.5 − 2.3 + 7.5 Earth oceans of water. If all planets in the system formed in the same way, this would indicate a limited reservoir of volatiles for the potentially habitable planets in the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.