We present Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations of the source and lens stars for planetary microlensing event OGLE-2005-BLG-169, which confirm the relative proper motion prediction due to the planetary light curve signal observed for this event. This (and the companion Keck result) provide the first confirmation of a planetary microlensing signal, for which the deviation was only 2%. The follow-up observations determine the flux of the planetary host star in multiple passbands and remove light curve model ambiguity caused by sparse sampling of part of the light curve. This leads to a precise determination of the properties of the OGLE-2005-BLG-169Lb planetary system. Combining the constraints from the microlensing light curve with the photometry and astrometry of the HST/WFC3 data, we find star and planet masses of M * = 0.69 ± 0.02M and m p = 14.1 ± 0.9M ⊕ . The planetary microlens system is located toward the Galactic bulge at a distance of D L = 4.1 ± 0.4 kpc and the projected star-planet separation is a ⊥ = 3.5 ± 0.3 AU, corresponding to a semimajor axis of a = 4.0 +2.2 −0.6 AU.
AU Microscopii (AU Mic) is the second closest pre-main-sequence star, at a distance of 9.79 parsecs and with an age of 22 million years 1 . AU Mic possesses a relatively rare 2 and spatially resolved 3 edge-on debris disk extending from about 35 to 210 astronomical units from the star 4 , and with clumps exhibiting non-Keplerian motion 5-7 . Detection of newly formed planets around such a star is challenged by the presence of spots, plage, flares and other manifestations of magnetic 'activity' on the star 8,9 . Here we report observations of a planet transiting AU Mic. The transiting planet, AU Mic b, has an orbital period of 8.46 days, an orbital distance of 0.07 astronomical units, a radius of 0.4 Jupiter radii, and a mass of less than 0.18 Jupiter masses at 3σ confidence. Our observations of a planet co-existing with a debris disk offer the opportunity to test the predictions of current models of planet formation and evolution.
We report the detection of the first circumbinary planet (CBP) found by Transiting Exoplanet Survey Satellite (TESS). The target, a known eclipsing binary, was observed in sectors 1 through 12 at 30 minute cadence and in sectors 4 through 12 at 2 minute cadence. It consists of two stars with masses of 1.1 M e and 0.3 M e on a slightly eccentric (0.16), 14.6 day orbit, producing prominent primary eclipses and shallow secondary eclipses. The planet has a radius of ∼6.9 R ⊕ and was observed to make three transits across the primary star of roughly equal depths
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.