Pain stimulates some behaviors (e.g., withdrawal responses) and depresses other behaviors (e.g., feeding, locomotion). We are developing methods for testing candidate analgesics using measurements of pain-depressed behaviors. Such assays may model important aspects of clinical pain and complement traditional procedures that measure pain-stimulated behaviors. The present study characterized the effects of a chronic pain manipulation (monosodium iodoacetate (MIA)-induced osteoarthritis) on wheel running in rats. Rats had 24hr voluntary access to running wheels. Duration of running wheel acquisition was manipulated such that rats had either 21 or 7 days of running wheel access prior to MIA administration. Wheel running was monitored for an additional 21 days following MIA administration. MIA produced concentration-and acquisition lengthdependent decreases in wheel running. Parallel experiments demonstrated that MIA produced concentration-dependent tactile allodynia and shifts in hind limb weight bearing. MIA was differentially potent across assays with a potency rank: weight-bearing ≥ von Frey > running wheel. MIA produced greater depression of wheel running in rats with relatively high baseline running rates compared to rats with relatively low baseline running rates. The differential potency of MIA across assays and apparent rate-dependent effects in running wheels may impact our traditional interpretations of preclinical nociceptive and antinociceptive testing.
The relationship between fiber type composition and the increase in blood ammonia was examined following a maximal O2 consumption (VO2max) test. Muscle biopsies were taken from the middle portion of the vastus lateralis for determination of fiber type percentages. Two subject groups were selected on the basis of a high (HST) or low (LST) percentage of slow-twitch fibers and compared for blood ammonia and lactate levels after exercise at work loads of approximately 85 and 110% of VO2max. An inverse relationship was found between the percentage of slow-twitch fibers and the increase in blood ammonia. Blood ammonia increased after exercise at both 85 and 110% of VO2max. However, the increase was twofold greater for the LST group following the 110% work effort. The increases in blood ammonia and lactate were positively correlated for both groups following exercise. The results suggest that the proportion of slow-twitch fibers plays an important role in determining the magnitude of the increase in blood ammonia after intense exercise.
Previous work in our laboratories provides preclinical evidence that mixed-action delta/mu receptor glycopeptides have equivalent efficacy for treating pain with reduced side effect profiles compared to widely used mu agonist analgesics such as morphine. This study evaluated the rewarding and reinforcing effects of a lead candidate, mixed-action delta/mu agonist MMP-2200, using a conditioned place preference assay as well as a drug self-administration procedure in rats. In place conditioning studies, rats underwent a 2-week conditioning protocol and were then tested for chamber preference. Rats receiving MMP-2200, at previously determined analgesic doses, could not distinguish between the drug and saline-paired chamber, whereas rats receiving the opioid agonist morphine showed a strong preference for the morphine-paired chamber. In self-administration studies, rats were trained to respond for the high efficacy mu opioid receptor agonist fentanyl on an FR5 schedule of reinforcement. Following complete dose-response determinations for fentanyl, a range of doses of MMP-2200 as well as morphine were tested. Relative to the mu agonist morphine, MMP-2200 maintained a significantly lower number of drug infusions. To begin investigating potential molecular mechanisms for the reduced side effect profile of MMP-2200, we also examined βarrestin2 (βarr2) recruitment and chronic MMP-2200 induced cAMP tolerance and super-activation at the human delta and mu receptors in vitro. MMP-2200 efficaciously recruited βarr2 to both receptors, and induced cAMP tolerance and super-activation equivalent to or greater than morphine at both receptors. The in vivo findings suggest that MMP-2200 may be less reinforcing than morphine but may have some abuse potential. The reduced side effect profile cannot be explained by reduced βarr2 recruitment or reduced cAMP tolerance and superactivation at the monomeric receptors in vitro.
Female Sprague-Dawley rats were subjected to a ten week training program to determine the influence of intense interval running on the fiber type composition of selected hindlimb muscles; soleus (S), plantaris (P), deep vastus lateralis (DVL), and superficial vastus lateralis (SVL). The muscles of one hindlimb were used for histochemical ATPase analysis to determine the distribution of fiber types and those of the contralateral hindlimb were assayed biochemically for citrate synthase activity (an aerobic marker). Training induced a significant increase in citrate synthase activity in each muscle section. The largest absolute increase occurred in the DVL and the largest relative increase occurred in the SVL. The distribution of fiber types within the S (85% slow-twitch) and SVL (100% fast-twitch) remained unchanged with training. However, significant increases in the percentage of type I (slow-twitch) fibers in both the P (2-fold) and DVL (3-fold) were observed with concomitant decreases in the type II (fast-twitch) population. In addition, training induced significant changes in the fast-twitch subtype populations of the DVL (IIB----IIA). These data suggest exercise-induced fiber type transformations occurring both within the fast-twitch population and between fast-twitch and slow-twitch fibers in certain hindlimb muscles of the rat following a high intensity interval training program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.