Formation of a condensed and properly remodeled bivalent is required for accurate execution of meiosis. Meiotic roles are identified for the highly evolutionarily conserved protein AKIRIN in bivalent remodeling in a synaptonemal complex (SC)–dependent and SC–independent manner, demonstrating that proper SC disassembly is crucial for bivalent structure.
Akirin, a conserved metazoan protein, functions in muscle development in flies and mice. However, this was only tested in the rodent and fly model systems. Akirin was shown to act with chromatin remodeling complexes in transcription and was established as a downstream target of the NFκB pathway. Here we show a role for Caenorhabditis elegans Akirin/AKIR-1 in the muscle and body length regulation through a different pathway. Akirin localizes to somatic tissues throughout the body of C. elegans, including muscle nuclei. In agreement with its role in other model systems, Akirin loss of function mutants exhibit defects in muscle development in the embryo, as well as defects in movement and maintenance of muscle integrity in the C. elegans adult. We also have determined that Akirin acts downstream of the TGF-β Sma/Mab signaling pathway in controlling body size. Moreover, we found that the loss of Akirin resulted in an increase in autophagy markers, similar to mutants in the TGF-β Sma/Mab signaling pathway. In contrast to what is known in rodent and fly models, C. elegans Akirin does not act with the SWI/SNF chromatin-remodeling complex, and is instead involved with the NuRD chromatin remodeling complex in both movement and regulation of body size. Our studies define a novel developmental role (body size) and a new pathway (TGF-β Sma/Mab) for Akirin function, and confirmed its evolutionarily conserved function in muscle development in a new organism.
The Wnt/β-catenin signaling pathway is utilized across metazoans. However, the mechanism of signal transduction, especially dissociation of the β-catenin destruction complex by Dishevelled proteins, remains controversial. Here, we describe the function of the Dishevelled paralogs DSH-2 and MIG-5 in the Wnt/β-catenin asymmetry (WβA) pathway in Caenorhabditis elegans, where WβA drives asymmetric cell divisions throughout development. We find that DSH-2 and MIG-5 redundantly regulate cell fate in hypodermal seam cells. Similarly, both DSH-2 and MIG-5 are required for positive regulation of SYS-1 (a C. elegans β-catenin), but MIG-5 has a stronger effect on the polarity of SYS-1 localization. We show that MIG-5 controls cortical APR-1 (the C. elegans APC) localization. DSH-2 and MIG-5 both regulate the localization of WRM-1 (another C. elegans β-catenin), acting together as negative regulators of WRM-1 nuclear localization. Finally, we demonstrate that overexpression of DSH-2 or MIG-5 in seam cells leads to stabilization of SYS-1 in the anterior seam daughter, solidifying the Dishevelled proteins as positive regulators of SYS-1. Overall, we have further defined the role of Dishevelled in the WβA signaling pathway, and demonstrated that DSH-2 and MIG-5 regulate cell fate, β-catenin nuclear levels and the polarity of β-catenin regulation.
Skuodas and Clemons et al. show that protein aggregation is pervasive during early development and that the ABCF family of soluble ATP-binding proteins, which are encoded by animal genomes and expressed embryonically, regulate disaggregation and are instrumental for a normal developmental program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.