Several misfolding diseases commence when a secreted folded protein encounters a partially denaturing microenvironment, enabling its self assembly into amyloid. Although amyloidosis is modulated by numerous environmental and genetic factors, single point mutations within the amyloidogenic protein can dramatically influence disease phenotype. Mutations that destabilize the native state predispose an individual to disease; however, thermodynamic stability alone does not reliably predict disease severity. Here we show that the rate of transthyretin (TTR) tetramer dissociation required for amyloid formation is strongly influenced by mutation (V30M, L55P, T119M, V122I), with rapid rates exacerbating and slow rates reducing amyloidogenicity. Although these rates are difficult to predict a priori, they notably influence disease penetrance and age of onset. L55P TTR exhibits severe pathology because the tetramer both dissociates quickly and is highly destabilized. Even though V30M and L55P TTR are similarly destabilized, the V30M disease phenotype is milder because V30M dissociates more slowly, even slower than wild type (WT). Although WT and V122I TTR have nearly equivalent tetramer stabilities, V122I cardiomyopathy, unlike WT cardiomyopathy, has nearly complete penetrance-presumably because of its 2-fold increase in dissociation rate. We show that the T119M homotetramer exhibits kinetic stabilization and therefore dissociates exceedingly slowly, likely explaining how it functions to protect V30M͞T119M compound heterozygotes from disease. An understanding of how mutations influence both the kinetics and thermodynamics of misfolding allows us to rationalize the phenotypic diversity of amyloid diseases, especially when considered in concert with other genetic and environmental data.A myloid diseases are a large group of an even larger collection of misfolding disorders, the former including greater than 80 familial transthyretin (TTR)-based pathologies (1-11). The TTR missense mutations associated with familial amyloid disease display a wide range of diversity in age of disease onset, penetrance, etc. In diseases resembling and including the TTR amyloidoses, normally folded secreted proteins must first undergo partial denaturation to assemble into amyloid (7-10, 12). Although amyloidosis is modulated by numerous environmental and genetic factors (13), it is known that mutations that destabilize the native state predispose an individual to disease (7,8,14). However, thermodynamic stability alone does not reliably predict disease severity (15).Tetramer dissociation is required for TTR amyloid fibril formation (12,16,17). However, the resulting normally folded monomer cannot form amyloid without undergoing partial denaturation (12, 16, 17), yielding the so-called monomeric amyloidogenic intermediate composed of a three-stranded antiparallel -sheet structure (18). Herein we use chaotropic denaturation studies in an attempt to understand energetic differences between single site variants of TTR, all of which are tetrameric u...
The deposition of fibrils and amorphous aggregates of transthyretin (TTR) in patient tissues is a hallmark of TTR amyloid disease, but the molecular details of amyloidogenesis are poorly understood. Tetramer dissociation is typically rate-limiting for TTR amyloid fibril formation, so we have used a monomeric variant of TTR (M-TTR) to study the mechanism of aggregation. Amyloid formation is often considered to be a nucleation-dependent process, where fibril growth requires the formation of an oligomeric nucleus that is the highest energy species on the pathway. According to this model, the rate of fibril formation should be accelerated by the addition of preformed aggregates or "seeds", which effectively bypasses the nucleation step. Herein, we demonstrate that M-TTR amyloidogenesis at low pH is a complex, multistep reaction whose kinetic behavior is incompatible with the expectations for a nucleation-dependent polymerization. M-TTR aggregation is not accelerated by seeding, and the dependence of the reaction timecourse is first-order on the M-TTR concentration, consistent either with a dimeric nucleus or with a nonnucleated process where each step is bimolecular and essentially irreversible. These studies suggest that amyloid formation by M-TTR under partially denaturing conditions is a downhill polymerization, in which the highest energy species is the native monomer. Our results emphasize the importance of therapeutic strategies that stabilize the TTR tetramer and may help to explain why more than eighty TTR variants are disease-associated. The differences between amyloid formation by M-TTR and other amyloidogenic peptides (such as amyloid beta-peptide and islet amyloid polypeptide) demonstrate that these polypeptides do not share a common aggregation mechanism, at least under the conditions examined thus far.
The heme domain (iNOS(heme)) of inducible nitric oxide synthase (NOS) was expressed in Escherichia coli and purified to homogeneity. Rapid freeze-quench (RFQ) EPR was used to monitor the reaction of the reduced iNOS(heme) with oxygen in the presence and absence of substrate. In these reactions, heme oxidation occurs at a rate of approximately 15 s(-)(1) at 4 degrees C. A transient species with a g = 2.0 EPR signal is also observed under these conditions. The spectral properties of the g = 2.0 signal are those of an anisotropic organic radical with S = (1)/(2). Comparison of the EPR spectra obtained when iNOS(heme) is reconstituted with N5-(14)N- and (15)N-substituted tetrahydrobiopterin (H(4)B) shows a hyperfine interaction with the pterin N5 nitrogen and identifies the radical as the one-electron oxidized form (H(3)B.) of the bound H(4)B. Substitution of D(2)O for H(2)O reveals the presence of hyperfine-coupled exchangeable protons in the H(4)B radical. This radical forms at a rate of 15-20 s(-)(1), with a slower decay rate that varies (0.12-0.7 s(-)(1)) depending on the substrate. At 127 ms, H(3)B. accumulates to a maximum of 80% of the total iNOS(heme) concentration in the presence of arginine but only to approximately 2.8% in the presence of NHA. Double-mixing RFQ experiments, where NHA is added after the formation of H(3)B., show that NHA does not react rapidly with H(3)B. and suggest that NHA instead prevents the formation of the H(4)B radical. These data constitute the first direct evidence for an NOS-bound H(3)B. and are most consistent with a role for H(4)B in electron transfer in the NOS reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.