Background: Infectious disease epidemiology and planetary health literature often cite solid waste and plastic pollution as risk factors for vector-borne diseases and urban zoonoses; however, no rigorous reviews of the risks to human health have been published since 1994. This paper aims to identify research gaps and outline potential solutions to interrupt the vicious cycle of solid wastes; disease vectors and reservoirs; infection and disease; and poverty. Methods: We searched peer-reviewed publications from PubMed, Google Scholar, and Stanford Searchworks, and references from relevant articles using the search terms ("disease" OR "epidemiology") AND ("plastic pollution," "garbage," and "trash," "rubbish," "refuse," OR "solid waste"). Abstracts and reports from meetings were included only when they related directly to previously published work. Only articles published in English, Spanish, or Portuguese through 2018 were included, with a focus on post-1994, after the last comprehensive review was published. Cancer, diabetes, and food chain-specific articles were outside the scope and excluded. After completing the literature review, we further limited the literature to "urban zoonotic and biological vector-borne diseases" or to "zoonotic and biological vector-borne diseases of the urban environment." Results: Urban biological vector-borne diseases, especially Aedes-borne diseases, are associated with solid waste accumulation but vector preferences vary over season and region. Urban zoonosis, especially rodent and canine disease reservoirs, are associated with solid waste in urban settings, especially when garbage accumulates over time, creating burrowing sites and food for reservoirs. Although evidence suggests the link between plastic pollution/solid waste and human disease, measurements are not standardized, confounders are not rigorously controlled, and the quality of evidence varies. Here we propose a framework for solutions-based research in three areas: innovation, education, and policy. Krystosik et al. Solid Wastes and Disease Vectors and Reservoirs Conclusions: Disease epidemics are increasing in scope and scale with urban populations growing, climate change providing newly suitable vector climates, and immunologically naïve populations becoming newly exposed. Sustainable solid waste management is crucial to prevention, specifically in urban environments that favor urban vectors such as Aedes species. We propose that next steps should include more robust epidemiological measurements and propose a framework for solutions-based research.
Climate drives population dynamics through multiple mechanisms, which can lead to seemingly context-dependent effects of climate on natural populations. For climate-sensitive diseases, such as dengue, chikungunya, and Zika, climate appears to have opposing effects in different contexts. Here we show that a model, parameterized with laboratory measured climate-driven mosquito physiology, captures three key epidemic characteristics across ecologically and culturally distinct settings in Ecuador and Kenya: the number, timing, and duration of outbreaks. The model generates a range of disease dynamics consistent with observed Aedes aegypti abundances and laboratory-confirmed arboviral incidence with variable accuracy (28–85% for vectors, 44–88% for incidence). The model predicted vector dynamics better in sites with a smaller proportion of young children in the population, lower mean temperature, and homes with piped water and made of cement. Models with limited calibration that robustly capture climate-virus relationships can help guide intervention efforts and climate change disease projections.
Alphaviruses, such as chikungunya virus, and flaviviruses, such as dengue virus, are (re)-emerging arboviruses that are endemic in tropical environments. In Africa, arbovirus infections are often undiagnosed and unreported, with febrile illnesses often assumed to be malaria. This cross-sectional study aimed to characterize the seroprevalence of alphaviruses and flaviviruses among children (ages 5–14, n = 250) and adults (ages 15 ≥ 75, n = 250) in western Kenya. Risk factors for seropositivity were explored using Lasso regression. Overall, 67% of participants showed alphavirus seropositivity (CI95 63%–70%), and 1.6% of participants showed flavivirus seropositivity (CI95 0.7%–3%). Children aged 10–14 were more likely to be seropositive to an alphavirus than adults (p < 0.001), suggesting a recent transmission period. Alphavirus and flavivirus seropositivity was detected in the youngest participants (age 5–9), providing evidence of inter-epidemic transmission. Demographic variables that were significantly different amongst those with previous infection versus those without infection included age, education level, and occupation. Behavioral and environmental variables significantly different amongst those in with previous infection to those without infection included taking animals for grazing, fishing, and recent village flooding. Experience of recent fever was also found to be a significant indicator of infection (p = 0.027). These results confirm alphavirus and flavivirus exposure in western Kenya, while illustrating significantly higher alphavirus transmission compared to previous studies.
IntroductionIndividuals exposed to malaria infections for a long time develop immune responses capable of blocking Plasmodium transmission to mosquito vectors, potentially limiting parasite spreading in nature. Development of a malaria TB vaccine requires a better understanding of the mechanisms and main effectors responsible for transmission blocking (TB) responses. The lack of an in vitro culture system for Plasmodium vivax has been an important drawback for development of a standardized method to assess TB responses to this parasite. This study evaluated host, vector, and parasite factors that may influence Anopheles mosquito infection in order to develop an efficient and reliable assay to assess the TB immunity.Methods/Principal FindingsA total of 94 P. vivax infected patients were enrolled as parasite donors or subjects of direct mosquito feeding in two malaria endemic regions of Colombia (Tierralta, and Buenaventura). Parasite infectiousness was assessed by membrane feeding assay or direct feeding assay using laboratory reared Anopheles mosquitoes. Infection was measured by qPCR and by microscopically examining mosquito midguts at day 7 for the presence of oocysts.Best infectivity was attained in four day old mosquitoes fed at a density of 100 mosquitos/cage. Membrane feeding assays produced statistically significant better infections than direct feeding assays in parasite donors; cytokine profiles showed increased IFN-γ, TNF and IL-1 levels in non-infectious individuals. Mosquito infections and parasite maturation were more reliably assessed by PCR compared to microscopy.ConclusionsWe evaluated mosquito, parasite and host factors that may affect the outcome of parasite transmission as measured by artificial membrane feeding assays. Results have led us to conclude that: 1) optimal mosquito infectivity occurs with mosquitoes four days after emergence at a cage density of 100; 2) mosquito infectivity is best quantified by PCR as it may be underestimated by microscopy; 3) host cellular immune response did not appear to significantly affect mosquito infectivity; and 4) no statistically significant difference was observed in transmission between mosquitoes directly feeding on humans and artificial membrane feeding assays.
BackgroundCali, Colombia has experienced chikungunya and Zika outbreaks and hypoendemic dengue. Studies have explained Cali’s dengue patterns but lack the sub-neighborhood-scale detail investigated here.MethodsSpatial-video geonarratives (SVG) with Ministry of Health officials and Community Health Workers were collected in hotspots, providing perspective on perceptions of why dengue, chikungunya and Zika hotspots exist, impediments to control, and social outcomes. Using spatial video and Google Street View, sub-neighborhood features possibly contributing to incidence were mapped to create risk surfaces, later compared with dengue, chikungunya and Zika case data.ResultsSVG captured insights in 24 neighborhoods. Trash and water risks in Calipso were mapped using SVG results. Perceived risk factors included proximity to standing water, canals, poverty, invasions, localized violence and military migration. These risks overlapped case density maps and identified areas that are suitable for transmission but are possibly underreporting to the surveillance system.ConclusionResulting risk maps with local context could be leveraged to increase vector-control efficiency- targeting key areas of environmental risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.