dStressor exposure has been shown to enhance host susceptibility and the severity of a plethora of illnesses, including gastrointestinal disease. In mice, susceptibility to Citrobacter rodentium has been shown to be dependent on host genetics as well as the composition of the intestinal microbiota, but the effects of stressor exposure on this gastrointestinal pathogen have not been elucidated fully. Previously, our lab showed that exposure to the prolonged-restraint stressor prior to a challenge with C. rodentium alters the intestinal microbiota community structure, including a reduction of beneficial genera such as Lactobacillus, which may contribute to stressor-enhanced C. rodentium-induced infectious colitis. To test the effects of stressor exposure on C. rodentium infection, we exposed resistant mice to a prolonged-restraint stressor concurrent with pathogen challenge. Exposure to prolonged restraint significantly enhanced C. rodentium-induced infectious colitis in resistant mice, as measured by increases in colonic histopathology, colonic inflammatory mediator gene production, and pathogen translocation from the colon to the spleen. It was further tested if the beneficial bacterium Lactobacillus reuteri could reduce the stressor-enhanced susceptibility to C. rodentium-enhanced infectious colitis. While L. reuteri treatment did not reduce all aspects of stressor-enhanced infectious colitis, it did significantly reduce pathogen translocation from the colon to the spleen. Taken together, these data demonstrate the deleterious effects that prolonged stressor exposure can have at the onset of a gastrointestinal infection by its ability to render a resistant mouse highly susceptible to C. rodentium. Probiotic treatment ameliorated the systemic manifestations of stress on colonic infection.
Alzheimer disease (AD) is the most prominent form of dementia and the 5th leading cause of death in individuals over 65. AD is a complex disease stemming from genetic, environmental, and lifestyle factors. It is known that AD patients have increased levels of senile plaques, neurofibrillary tangles, and neuroinflammation; however, the mechanism(s) by which the plaques, tangles, and neuroinflammation manifest remain elusive. A recent hypothesis has emerged that resident bacterial populations contribute to the development and progression of AD by contributing to neuroinflammation, senile plaque formation, and potentially neurofibrillary tangle accumulation (Fig. 1). This review will highlight recent studies involved in elucidating microbial involvement in AD development and progression.
Psychological stressors are known to affect colonic diseases but the mechanisms by which this occurs, and whether probiotics can prevent stressor effects, are not understood. Because inflammatory monocytes that traffic into the colon can exacerbate colitis, we tested whether CCL2, a chemokine involved in monocyte recruitment, was necessary for stressor-induced exacerbation of infectious colitis. Mice were exposed to a social disruption stressor that entails repeated social defeat. During stressor exposure, mice were orally challenged with Citrobacter rodentium to induce a colonic inflammatory response. Exposure to the stressor during challenge resulted in significantly higher colonic pathogen levels, translocation to the spleen, increases in colonic macrophages, and increases in inflammatory cytokines and chemokines. The stressor-enhanced severity of C. rodentium-induced colitis was not evident in CCL2−/− mice, indicating the effects of the stressor are CCL2-dependent. Additionally, we tested whether probiotic intervention could attenuate stressor-enhanced infectious colitis by reducing monocyte/macrophage accumulation. Treating mice with probiotic Lactobacillus reuteri reduced CCL2 mRNA levels in the colon, and attenuated stressor-enhanced infectious colitis. These data demonstrate that probiotic L. reuteri can prevent the exacerbating effects of stressor exposure on pathogen-induced colitis, and suggest that one mechanism by which this occurs is through a down-regulation of the chemokine CCL2.
Studies have shown that exposure to psychological stressors leads to inflammation throughout the body. This has been widely studied using social disruption stress (SDR), a social stressor, which involves repeated social defeat in subordinate mice. Exposure to SDR increases serum cytokine levels, results in accumulation of spleen CD11b+ myeloid cells, and primes macrophages for increased cytokine and microbicidal activity. Our previous studies showed that intestinal microbes are necessary for SDR-enhancement of innate immunity. Here, we show that SDR increases spleen CD11b+Ly6CintermLy6G+ neutrophil and CD11b+Ly6ChiLy6G− monocyte numbers compared to control mice. Further, we found that neutrophils and monocytes from stressor-exposed mice expressed higher levels of IL-1β mRNA. To determine whether bacterial translocation may contribute to these effects, bacterial 16S rRNA was quantified using qRT-PCR with bacterial group-specific primers. Exposure to the SDR stressor specifically increased Lactobacillus RNA in the spleen, which localized in spleen monocytes. The increased spleen levels of Lactobacillus 16S rRNA in SDR mice positively correlated with increased levels of IL-1β and IL-23 mRNA. Our findings indicate that during stressor exposure, Lactobacillus spp. can translocate to the spleen and prime the innate immune system for enhanced reactivity.
Over the past decade, it has become increasingly evident that there are extensive bidirectional interactions between the body and its microbiota. These interactions are evident during stressful periods, where it is recognized that commensal microbiota community structure is significantly changed. Many different stressors, ranging from early life stressors to stressors administered during adulthood, lead to significant, community-wide differences in the microbiota. The mechanisms through which this occurs are not yet known, but it is known that commensal microbes can recognize, and respond to, mammalian hormones and neurotransmitters, including those that are involved with the physiological response to stressful stimuli. In addition, the physiological stress response also changes many aspects of gastrointestinal physiology that can impact microbial community composition. Thus, there are many routes through which microbial community composition might be disrupted during stressful periods. The implications of these disruptions in commensal microbial communities for host health are still not well understood, but the commensal microbiota have been linked to stressor-induced immunopotentiation. The role of the microbiota in stressor-induced immunopotentiation can be adaptive, such as when these microbes stimulate innate defenses against bacterial infection. However, the commensal microbiota can also lead to maladaptive immune responses during stressor-exposure. This is evident in animal models of colonic inflammation where stressor exposure increases the inflammation through mechanisms involving the microbiota. It is likely that during stressor exposure, immune cell functioning is regulated by combined effects of both neurotransmitters/hormones and commensal microbes. Defining this regulation should be a focus of future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.