To provide an observational basis for the Intergovernmental Panel on Climate Change projections of a slowing Atlantic meridional overturning circulation (MOC) in the 21st century, the Overturning in the Subpolar North Atlantic Program (OSNAP) observing system was launched in the summer of 2014. The first 21-month record reveals a highly variable overturning circulation responsible for the majority of the heat and freshwater transport across the OSNAP line. In a departure from the prevailing view that changes in deep water formation in the Labrador Sea dominate MOC variability, these results suggest that the conversion of warm, salty, shallow Atlantic waters into colder, fresher, deep waters that move southward in the Irminger and Iceland basins is largely responsible for overturning and its variability in the subpolar basin.
for the AMOC deep limb. In order to assess the impact of the interior pathway relative to the DWBC pathway, this work seeks to quantify the AMOC deep limb pathways in ocean circulation models, compare the pathway signatures of these models to observations, and identify a mechanism driving the interior pathway. The partitioning of the AMOC deep limb into interior and DWBC pathways is observed in several ocean models. Furthermore, there is a good agreement between the structure of the export pathways in models and observations. Both Eulerian and Lagrangian techniques, in models and observations, are used to identify the DWBC and interior pathways and these two perspectives are shown to be compatible with one another.Finally, deep, eddy-driven, recirculation gyres are shown to be a mechanism driving the interior pathway and the existence of the interior pathway is consistent with the vorticity balance at depth. The interior pathway makes a significant contribution to the total transport of the deep limb of the AMOC. Since the interior pathway is much broader and slower than the DWBC pathway, the large-scale transport of climate signals, heat, and anthropogenic CO 2 associated with the AMOC are slower and mixed more broadly throughout the ocean than once thought. iv
The circulation of water masses in the northeastern North Atlantic Ocean has a strong influence on global climate owing to the northward transport of warm subtropical water to high latitudes. But the ocean circulation at depths below the reach of satellite observations is difficult to measure, and only recently have comprehensive, direct observations of whole ocean basins been possible. Here we present quantitative maps of the absolute velocities at two levels in the northeastern North Atlantic as obtained from acoustically tracked floats. We find that most of the mean flow transported northward by the Gulf Stream system at the thermocline level (about 600 m depth) remains within the subpolar region, and only relatively little enters the Rockall trough or the Nordic seas. Contrary to previous work, our data indicate that warm, saline water from the Mediterranean Sea reaches the high latitudes through a combination of narrow slope currents and mixing processes. At both depths under investigation, currents cross the Mid-Atlantic Ridge preferentially over deep gaps in the ridge, demonstrating that sea-floor topography can constrain even upper-ocean circulation patterns.
The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.