Epithelial cells undergo tubulogenesis in response to morphogens such as hepatocyte growth factor (HGF). To organize into tubules, cells must execute a complex series of morphogenetic events; however, the mechanisms that underlie the timing and sequence of these events are poorly understood. Here, we show that downstream effectors of HGF coordinately regulate successive stages of tubulogenesis. Activation of extracellular-regulated kinase (ERK) is necessary and sufficient for the initial stage, during which cells depolarize and migrate. ERK becomes dispensable for the latter stage, during which cells repolarize and differentiate. Conversely, the activity of matrix metalloproteases (MMPs) is essential for the late stage but not the initial stage. Thus, ERK and MMPs define two regulatory subprograms that act in sequence. By inducing these reciprocal signals, HGF directs the morphogenetic progression of tubule development.
Saccharomyces cerevisiae MPS1 encodes an essential protein kinase that has roles in spindle pole body (SPB) duplication and the spindle checkpoint. Previously characterized MPS1 mutants fail in both functions, leading to aberrant DNA segregation with lethal consequences. Here, we report the identification of a unique conditional allele, mps1–8, that is defective in SPB duplication but not the spindle checkpoint. The mutations in mps1-8 are in the noncatalytic region of MPS1, and analysis of the mutant protein indicates that Mps1-8p has wild-type kinase activity in vitro. A screen for dosage suppressors of the mps1-8 conditional growth phenotype identified the gene encoding the integral SPB component SPC42. Additional analysis revealed that mps1-8 exhibits synthetic growth defects when combined with certain mutant alleles of SPC42. An epitope-tagged version of Mps1p (Mps1p-myc) localizes to SPBs and kinetochores by immunofluorescence microscopy and immuno-EM analysis. This is consistent with the physical interaction we detect between Mps1p and Spc42p by coimmunoprecipitation. Spc42p is a substrate for Mps1p phosphorylation in vitro, and Spc42p phosphorylation is dependent on Mps1p in vivo. Finally, Spc42p assembly is abnormal in a mps1-1 mutant strain. We conclude that Mps1p regulates assembly of the integral SPB component Spc42p during SPB duplication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.