The active site in AcpS is only formed when two AcpS molecules dimerize. The addition of a third molecule allows for the formation of two additional active sites and also permits a large hydrophobic surface from each molecule of AcpS to be buried in the trimer. The mutations Ile5-->Arg, Gln113-->Glu and Gln113-->Arg show that AcpS is inactive when unable to form a trimer. The co-crystal structures of AcpS-CoA and AcpS-ACP allow us to propose a catalytic mechanism for this class of 4'-phosphopantetheinyl transferases.
Maturation of the Saccharomyces cerevisiae a-factor precursor involves COOH-terminal CAAX processing (prenylation, AAX tripeptide proteolysis, and carboxyl methylation) followed by cleavage of an NH2-terminal extension (two sequential proteolytic processing steps). The aim of this study is to clarify the precise role of Ste24p, a membrane-spanning zinc metalloprotease, in the proteolytic processing of the a-factor precursor. We demonstrated previously that Ste24p is necessary for the first NH2-terminal processing step by analysis of radiolabeled a-factor intermediates in vivo (Fujimura-Kamada, K., F.J. Nouvet, and S. Michaelis. 1997. J. Cell Biol. 136:271–285). In contrast, using an in vitro protease assay, others showed that Ste24p (Afc1p) and another gene product, Rce1p, share partial overlapping function as COOH-terminal CAAX proteases (Boyartchuk, V.L., M.N. Ashby, and J. Rine. 1997. Science. 275:1796–1800). Here we resolve these apparently conflicting results and provide compelling in vivo evidence that Ste24p indeed functions at two steps of a-factor maturation using two methods. First, direct analysis of a-factor biosynthetic intermediates in the double mutant (ste24Δ rce1Δ) reveals a previously undetected species (P0*) that fails to be COOH terminally processed, consistent with redundant roles for Ste24p and Rce1p in COOH-terminal CAAX processing. Whereas a-factor maturation appears relatively normal in the rce1Δ single mutant, the ste24Δ single mutant accumulates an intermediate that is correctly COOH terminally processed but is defective in cleavage of the NH2-terminal extension, demonstrating that Ste24p is also involved in NH2-terminal processing. Together, these data indicate dual roles for Ste24p and a single role for Rce1p in a-factor processing. Second, by using a novel set of ubiquitin–a-factor fusions to separate the NH2- and COOH-terminal processing events of a-factor maturation, we provide independent evidence for the dual roles of Ste24p. We also report here the isolation of the human (Hs) Ste24p homologue, representing the first human CAAX protease to be cloned. We show that Hs Ste24p complements the mating defect of the yeast double mutant (ste24Δ rce1Δ) strain, implying that like yeast Ste24p, Hs Ste24p can mediate multiple types of proteolytic events.
Proteins terminating in the CAAX motif, for example Ras and the yeast a-factor mating pheromone, are prenylated, trimmed of their last three amino acids, and carboxyl-methylated. The enzymes that mediate these activities, collectively referred to as CAAX processing components, have been identified genetically in Saccharomyces cerevisiae. Whereas the Ram1p͞Ram2p prenyltransferase is a cytosolic soluble enzyme, sequence analysis predicts that the other CAAX processing components, the Rce1p and Ste24p proteases and the Ste14p methyltransferase, contain multiple membrane spans. To determine the intracellular site(s) at which CAAX processing occurs, we have examined the localization of the CAAX proteases Rce1p and Ste24p by subcellular fractionation and indirect immunof luorescence. We find that both of these proteases are associated with the endoplasmic reticulum (ER) membrane. In addition to having a role in CAAX processing, the Ste24p protease catalyzes the first of two cleavage steps that remove the amino-terminal extension from the a-factor precursor, suggesting that the first aminoterminal processing step of a-factor maturation also occurs at the ER membrane. The ER localization of Ste24p is consistent with the presence of a carboxyl-terminal dilysine ER retrieval motif, although we find that mutation of this motif does not result in mislocalization of Ste24p. Because the ER is not the ultimate destination for a-factor or most CAAX proteins, our results imply that a mechanism must exist for the intracellular routing of CAAX proteins from the ER membrane to other cellular sites.Many proteins are synthesized initially as precursors that undergo conversion to their mature form by post-translational processing activities and͞or covalent modifications. Although protein maturation is exemplified best by the processing of secretory prohormones that are translocated into and transported through the luminal compartments of the vesicular secretory pathway [e.g., endoplasmic reticulum (ER), Golgi and trans-Golgi network], there are notable examples of protein maturation that occur in the cytosol or on the cytosolic face of membranes. Examples include the removal of initiator methionines by methionyl aminopeptidase, the maturation of the interleukin (IL)-1 precursor by the IL-1 converting enzyme, the liberation of monoubiquitin from ubiquitin precursors by ubiquitin-specific proteases, and the multiple modifications of proteins bearing a carboxyl-terminal CAAX motif (C ϭ cysteine, A ϭ an aliphatic amino acid, and X ϭ one of several amino acids) by the components discussed below.The carboxyl-terminal tetrapeptide CAAX motif is found in a number of eukaryotic proteins, including the nonclassically secreted Saccharomyces cerevisiae mating pheromone a-factor (1, 2). Proteins terminating in a CAAX motif are modified at their carboxyl-termini in a sequential three-step process consisting of isoprenylation (farnesylation or geranylgeranylation), proteolysis, and carboxylmethylation (1, 2); this threestep process will be...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.