A new task goal elicits a feeling of pride in individuals with a subjective history of success, and this achievment pride produces anticipatory goal reactions that energize and direct behavior to approach the task goal. By distinguishing between promotion pride and prevention pride, the present paper extends this classic model of achievement motivation. Regulatory focus theory (Higgins, 1997) distinguishes between a promotion focus on hopes and accomplishments (gains) and a prevention focus on safety and responsibilities (non-losses). We propose that a subjective history of success with promotion-related eagerness (promotion pride) orients individuals toward using eagerness means to approach a new task goal, whereas a subjective history of success with prevention-related vigilance (prevention pride) orients individuals toward using vigilance means to approach a new task goal. Studies 1±3 tested this proposal by examining the relations between a new measure of participants' subjective histories of promotion success and prevention success (the Regulatory Focus Questionnaire (RFQ)) and their achievement strategies in different tasks. Study 4 examined the relation between participants' RFQ responses and their reported frequency of feeling eager or vigilant in past task engagements. Study 5 used an experimental priming technique to make participants temporarily experience either a subjective history of promotion success or a subjective history of prevention success. For both chronic and situationally induced achievement pride, these studies found that when approaching task goals individuals with promotion pride use eagerness means whereas individuals with prevention pride use vigilance means. Copyright # 2001 John Wiley & Sons, Ltd.According to McClelland and Atkinson's classic theory of achievement motivation (e.g. Atkinson, 1964;McClelland, 1951McClelland, , 1961McClelland, Atkinson, Clark, & Lowell, 1953), over time a new achievement task elicits the feelings associated with past task engagements. For individuals with a subjective history of success, for example, a new achievement task elicits a feeling of pride. This achievement pride produces anticipatory goal reactions that energize and direct behavior to approach
Learning a novel motor skill is associated with well characterized structural and functional plasticity in the rodent motor cortex. Furthermore, neuroimaging studies of visuomotor learning in humans have suggested that structural plasticity can occur in white matter (WM), but the biological basis for such changes is unclear. We assessed the influence of motor skill learning on WM structure within sensorimotor cortex using both diffusion MRI fractional anisotropy (FA) and quantitative immunohistochemistry. Seventy-two adult (male) rats were randomly assigned to one of three conditions (skilled reaching, unskilled reaching, and caged control). After 11 d of training, postmortem diffusion MRI revealed significantly higher FA in the skilled reaching group compared with the control groups, specifically in the WM subjacent to the sensorimotor cortex contralateral to the trained limb. In addition, within the skilled reaching group, FA across widespread regions of WM in the contralateral hemisphere correlated significantly with learning rate. Immunohistological analysis conducted on a subset of 24 animals (eight per group) revealed significantly increased myelin staining in the WM underlying motor cortex in the hemisphere contralateral (but not ipsilateral) to the trained limb for the skilled learning group versus the control groups. Within the trained hemisphere (but not the untrained hemisphere), myelin staining density correlated significantly with learning rate. Our results suggest that learning a novel motor skill induces structural change in task-relevant WM pathways and that these changes may in part reflect learning-related increases in myelination.
Controversy revolves around the differential contribution of NR2A- and NR2B-containing NMDA receptors, which coexist in principal forebrain neurons, to synaptic plasticity and learning in the adult brain. Here, we report genetically modified mice in which the NR2B subunit is selectively ablated in principal neurons of the entire postnatal forebrain or only the hippocampus. NR2B ablation resulted in smaller NMDA receptor-mediated EPSCs with accelerated decay kinetics, as recorded in CA1 pyramidal cells. CA3-to-CA1 field LTP remained largely unaltered, although a pairing protocol revealed decreased NMDA receptor-mediated charge transfer and reduced cellular LTP. Mice lacking NR2B in the forebrain were impaired on a range of memory tasks, presenting both spatial and nonspatial phenotypes. In contrast, hippocampus-specific NR2B ablation spared hippocampus-dependent, hidden-platform water maze performance but induced a selective, short-term, spatial working memory deficit for recently visited places. Thus, both hippocampal and extra-hippocampal NR2B containing NMDA receptors critically contribute to spatial performance.
Hippocampal NMDA receptors (NMDARs) and NMDAR-dependent synaptic plasticity are widely considered as crucial substrates of long-term spatial memory, although their precise role remains uncertain. Here we show that GluN1ΔDGCA1 mice, lacking NMDARs in all dentate gyrus and dorsal CA1 principal cells, acquired the spatial reference memory watermaze task as well as Controls, despite impairments on the spatial reference memory radial maze task. In a novel spatial discrimination watermaze paradigm, using two visually identical beacons, GluN1ΔDGCA1 mice were impaired at using spatial information to inhibit selecting the decoy beacon, despite knowing the platform’s actual spatial location. This failure could suffice to impair radial maze performance despite spatial memory itself being normal. Thus, these hippocampal NMDARs are not essential for encoding or storing long-term, associative spatial memories. Instead, we demonstrate an important role for the hippocampus in using spatial knowledge to select between alternative responses that arise from competing or overlapping memories.
NMDA receptors (NMDARs) containing NR2A (1) subunits are key contributors to hippocampal long-term potentiation (LTP) induction in adult animals and have therefore been widely implicated in hippocampus-dependent spatial learning. Here we show that mice lacking the NR2A subunit or its C-terminal intracellular domain exhibit impaired spatial working memory (SWM) but normal spatial reference memory (SRM). Both NR2A mutants acquired the SRM version of the water maze task, and the SRM component of the radial maze, as well as controls. They were, however, impaired on a non-matching-to-place T-maze task, and on the SWM component of the radial maze. In addition, NR2A knock-out mice displayed a diminished spatial novelty preference in a spontaneous exploration Y-maze task, and were impaired on a T-maze task in which distinctive inserts present on the floor of the maze determined which goal arm contained the reward, but only if there was a discontiguity between the conditional cue and the place at which the reward was delivered. This dissociation of spatial memory into distinctive components is strikingly similar to results obtained with mice lacking glutamate receptor-A (GluR-A)-containing AMPA receptors, which support long-term potentiation expression. These results identify a specific role for a NMDAR-dependent signaling pathway that leads to the activation of a GluR-A-dependent expression mechanism in a rapidly acquired, flexible form of spatial memory. This mechanism depends on the C-terminal intracellular domain of the NR2A subunit. In contrast, the ability to associate a particular spatial location with the water maze escape platform or food reward is NR2A independent, as well as GluR-A independent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.