Neurofibromatosis type 1 (NF1) is an autosomal dominant, multisystem disorder affecting approximately 1 in 3500 people. Significant advances in the understanding of the pathophysiology of NF1 have been made in the last decade. While no medical therapies are currently available, trials are ongoing to discover and test medical treatments for the various manifestations of NF1, primarily plexiform neurofibromas, learning disabilities, and optic pathway gliomas. Additionally, mutational analysis has become available on a clinical basis and is useful for diagnostic confirmation in individuals who do not fulfill diagnostic criteria or when prenatal diagnosis is desired. There are several disorders which may share overlapping features with NF1; in 2007, a disorder with cutaneous findings similar to NF1 was described. This paper addresses the dermatologist's role in diagnosis and management of NF1 and describes the variety of cutaneous and extracutaneous findings in NF1 to which the dermatologist may be exposed.
These results illuminate a broader phenotypic spectrum associated with CARD11 mutations in human subjects and underscore the need for functional studies to demonstrate that rare gene variants encountered in expected and unexpected phenotypes must nonetheless be validated for pathogenic activity.
Neurofibromatosis type 1 (NF1) represents a major risk factor for development of malignancy, particularly malignant peripheral nerve sheath tumors (MPNST), optic gliomas, other gliomas, and leukemias. The oncologist will see NF1 patients referred for treatment of malignancy, and should be alert to the possibility of undiagnosed NF1 among patients with cancer. Brain tumors tend to have a more indolent course in NF1 than in the general population, and hence are best managed conservatively. MPNST, in contrast, do not respond to standard chemotherapy or radiation therapy. The most effective treatment of MPNST appears to be early diagnosis and surgery, but early diagnosis is hampered by frequent occurrence within preexisting large tumors, making new growth or change difficult to detect. New insights into pathogenesis now offer hope of development of specific methods of treatment with reduced toxicity and more precise molecular targeting. There is an urgent need, however, to develop methods to measure tumor growth and monitor outcomes, develop preclinical drug screening systems, and further explore the pathogenesis of the disorder to determine whether mechanisms other than Ras regulation may be important in pathogenesis.
Missense mutations affecting membrane-bound transcription factor protease site 2 (MBTPS2) have been associated with Ichthyosis Follicularis with Atrichia and Photophobia (IFAP) syndrome with or without BRESHECK syndrome, with keratosis follicularis spinulosa decalvans, and Olmsted syndrome. This metalloprotease activates, by intramembranous trimming in conjunction with the protease MBTPS1, regulatory factors involved in sterol control of transcription and in cellular stress response. In this study, 11 different MBTPS2 missense mutations detected in patients from 13 unrelated families were correlated with the clinical phenotype, with their effect on cellular growth in media without lipids, and their potential role for sterol control of transcription. Seven variants were novel [c.774C>G (p.I258M); c.758G>C (p.G253A); c.686T>C (p.F229S); c.1427T>C (p.L476S); c.1430A>T (p.D477V); c.1499G>A (p.G500D); c.1538T>C (p.L513P)], four had previously been reported in unrelated sibships [c.261G>A (p.M87I); c.1286G>A (p.R429H); c.1424T>C (p.F475S); c.1523A>G (p.N508S)]. In the enzyme, the mutations cluster in transmembrane domains. Amino-acid exchanges near the active site are more detrimental to functionality of the enzyme and, clinically, associated with more severe phenotypes. In male patients, a genotype-phenotype correlation begins to emerge, linking the site of the mutation in MBTPS2 with the clinical outcome described as IFAP syndrome with or without BRESHECK syndrome, keratosis follicularis spinulosa decalvans, X-linked, Olmsted syndrome, or possibly further X-linked traits with an oculocutaneous component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.