One of the main goals of this study was to understand the relationship between an epidermal growth factor (EGF) receptor dileucine (LL)-motif (679-LL) required for lysosomal sorting and the protein ubiquitin ligase CBL. We show that receptors containing 679-AA (di-alanine) substitutions that are defective for ligand-induced degradation nevertheless bind CBL and undergo reversible protein ubiquitylation similar to wild-type receptors. We also demonstrate that 679-LL but not CBL is required for EGF receptor downregulation by an endosomal membrane protein encoded by human adenoviruses that uncouples internalization from post-endocytic sorting to lysosomes. 679-LL is necessary for endosomal retention as well as degradation by the adenovirus protein, and is also transferable to reporter molecules. Using NMR spectroscopy, we show that peptides with wild-type 679-LL or mutant 679-AA sequences both exhibit α-helical structural propensities but that this structure is not stable in water. A similar analysis carried out in hydrophobic media showed that the α-helical structure of the wild-type peptide is stabilized by specific interactions mediated by side-chains in both leucine residues. This structure distinguishes 679-LL from other dileucine-based sorting-signals with obligatory amino-terminal acidic residues that are recognized in the form of an extended β or β-like conformation. Taken together, these data show that 679-LL is an α-helical stabilizing motif that regulates a predominant step during lysosomal sorting, involving intracellular retention under both sub-saturating and saturating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.