Whether non-human animals can recognize human signals, including emotions, has both scientific and applied importance, and is particularly relevant for domesticated species. This study presents the first evidence of horses' abilities to spontaneously discriminate between positive (happy) and negative (angry) human facial expressions in photographs. Our results showed that the angry faces induced responses indicative of a functional understanding of the stimuli: horses displayed a left-gaze bias (a lateralization generally associated with stimuli perceived as negative) and a quicker increase in heart rate (HR) towards these photographs. Such lateralized responses towards human emotion have previously only been documented in dogs, and effects of facial expressions on HR have not been shown in any heterospecific studies. Alongside the insights that these findings provide into interspecific communication, they raise interesting questions about the generality and adaptiveness of emotional expression and perception across species.
For humans, facial expressions are important social signals, and how we perceive specific individuals may be influenced by subtle emotional cues that they have given us in past encounters. A wide range of animal species are also capable of discriminating the emotions of others through facial expressions [1-5], and it is clear that remembering emotional experiences with specific individuals could have clear benefits for social bonding and aggression avoidance when these individuals are encountered again. Although there is evidence that non-human animals are capable of remembering the identity of individuals who have directly harmed them [6, 7], it is not known whether animals can form lasting memories of specific individuals simply by observing subtle emotional expressions that they exhibit on their faces. Here we conducted controlled experiments in which domestic horses were presented with a photograph of an angry or happy human face and several hours later saw the person who had given the expression in a neutral state. Short-term exposure to the facial expression was enough to generate clear differences in subsequent responses to that individual (but not to a different mismatched person), consistent with the past angry expression having been perceived negatively and the happy expression positively. Both humans were blind to the photograph that the horses had seen. Our results provide clear evidence that some non-human animals can effectively eavesdrop on the emotional state cues that humans reveal on a moment-to-moment basis, using their memory of these to guide future interactions with particular individuals.
Forgetting over the short-term has challenged researchers for more than a century, largely because of difficulty in controlling what goes on within the memory retention interval. But the Òrecent negative probesÓ procedure offers a valuable paradigm, by examining influences of (presumably) unattended memoranda from prior trials. Here we used a recent probes task to investigate forgetting for visual non-verbal short-term memory. Target stimuli (2 visually presented abstract shapes) on a trial were followed after a retention interval by a probe, and participants indicated whether the probe matched one of the target items. Proactive interference, and hence memory for old trial probes, was observed whereby participants were slowed in rejecting a nonmatching probe on the present trial that nevertheless matched a target item on the previous trial (a recent negative probe). The attraction of the paradigm is that, by uncovering proactive influences of past trial probe stimuli, it is argued that active maintenance in memory of those probes is unlikely. In two experiments we recorded such proactive interference of prior trial items over a range of interstimulus (ISI) and intertrial (ITI) intervals (between 1 and 6 seconds respectively). Consistent with a proposed t w o -process memory conception (the active-passive memory model or APM), actively maintained memories on current trials decayed but passively Òmaintained,Ó or unattended, visual memories of stimuli on past trials did not.(abstract 221 words)
The ability to discriminate between emotion in vocal signals is highly adaptive in social species. It may also be adaptive for domestic species to distinguish such signals in humans. Here we present a playback study investigating whether horses spontaneously respond in a functionally relevant way towards positive and negative emotion in human nonverbal vocalisations. We presented horses with positively- and negatively-valenced human vocalisations (laughter and growling, respectively) in the absence of all other emotional cues. Horses were found to adopt a freeze posture for significantly longer immediately after hearing negative versus positive human vocalisations, suggesting that negative voices promote vigilance behaviours and may therefore be perceived as more threatening. In support of this interpretation, horses held their ears forwards for longer and performed fewer ear movements in response to negative voices, which further suggest increased vigilance. In addition, horses showed a right-ear/left-hemisphere bias when attending to positive compared with negative voices, suggesting that horses perceive laughter as more positive than growling. These findings raise interesting questions about the potential for universal discrimination of vocal affect and the role of lifetime learning versus other factors in interspecific communication.
Signals of dominance and submissiveness are central to conspecific communication in many species. For domestic animals, sensitivities to these signals in humans may also be beneficial. We presented domestic horses with a free choice between two unfamiliar humans, one adopting a submissive and the other a dominant body posture, with vocal and facial cues absent. Horses had previously been given food rewards by both human demonstrators, adopting neutral postures, to encourage approach behaviour. Across four counterbalanced test trials, horses showed a significant preference for approaching the submissive posture in both the first trial and across subsequent trials, and no individual subject showed an overall preference for dominant postures. There was no significant difference in latency to approach the two postures. This study provides novel evidence that domestic horses may spontaneously discriminate between, and attribute communicative significance to, human body postures of dominance; and further, that familiarity with the signaller is not a requirement for this response. These findings raise interesting questions about the plasticity of social signal perception across the species barrier.Electronic supplementary materialThe online version of this article (doi:10.1007/s10071-017-1140-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.