Mating activities change within a season in many animal and plant populations. In plants, selection towards early flowering is commonly observed. Pollinator‐mediated selection is hypothesized to be a pervasive evolutionary force acting directionally on flowering time. However, pollinator‐mediated mechanisms have rarely been tested in realistic field conditions, especially in perennial plants visited by a diversity of generalist insect pollinators. We examined pollinator visitation in eight Echinacea angustifolia populations in western Minnesota, USA, to gauge the potential for pollinator‐mediated selection. Echinacea is a common prairie perennial that persists in isolated remnant populations. Echinacea is self‐incompatible and is pollinated by a diversity of generalist solitary bees. A previous study found that early flowering Echinacea plants have higher seed set and their reproduction is less pollen‐limited than late flowering plants. Twelve times throughout a flowering season, we quantified pollinator visitation rates and pollinator community composition. In three sites, we also estimated the quality of pollinator visits by examining the composition of pollinators’ pollen loads brought to Echinacea plants. We found that three aspects of pollination dramatically decreased over the course of the flowering season. 1) Pollinators visited early flowering plants more frequently than late flowering plants. 2) The pollinator community was also less diverse late in the flowering season and became dominated by a single species of small bee, Augochlorella aurata. 3) Pollinators visiting Echinacea late in the season carried proportionally less conspecific pollen compared to pollinators visiting Echinacea early in the flowering season. Understanding within‐season dynamics of pollination helps predict the prevalence of inbreeding, phenological assortative mating, and reproductive failure, especially in fragmented plant populations.
The timing and synchrony of mating activity in a population may vary both within and among years. With the exception of masting species, in which reproductive activity fluctuates dramatically among years, mating synchrony is typically studied within years. However, opportunities to mate also vary among years in nonmasting iteroparous species. We demonstrate that studying only within-year flowering synchrony fails to accurately quantify variation in mating opportunity in an experimental population ([Formula: see text]) of a nonmasting species, Echinacea angustifolia. We quantified individuals' synchrony of flowering within and among years and partitioned the contribution of each measure to mean daily mating potential, the number of potential mates per individual per day, averaged over every day that it flowered during the 11-year study period. Individual within- and among-year synchrony displayed wide variation and were weakly correlated. In particular, among-year synchrony explained 39% more variation in mean daily mating potential than did within-year synchrony. Among-year synchrony could have underappreciated significance for mating dynamics in nonmasting species.
Premise: Reproductive fitness of individual plants depends on the timing of flowering, especially in mate-limited populations, such as those in fragmented habitats. When flowering time traits are associated with differential reproductive success, the narrow-sense heritability (h 2 ) of traits will determine how rapidly trait means evolve in response to selection. Heritability of flowering time is documented in many annual plants. However, estimating h 2 of flowering time in perennials presents additional methodological challenges, often including paternity assignment and trait expression over multiple years. Methods: We evaluated the h 2 of onset and duration of flowering using offspring-midparent regressions and restricted maximum likelihood methods in an experimental population of an iterocarpic, perennial, herbaceous plant, Echinacea angustifolia, growing in natural conditions. We assessed the flowering time of the parental cohort in 2005 and 2006; the offspring in 2014 through 2017. We also examined the effects of the paternity assignment from Cervus and MasterBayes on estimates of h 2 . Results: We found substantial h 2 for onset and duration of flowering. We also observed variation in estimates among years. The most reliable estimates for both traits fell in the range of 0.1-0.17. We found evidence of a genotype by year interaction for onset of flowering and strong evidence that genotypes are consistent in their duration of flowering across years. Conclusions: Substantial heritabilities in this population imply the capacity for a response to natural selection, while also suggesting the potential for differential contributions to adaptive evolution among seasons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.