Cancer immunotherapies, such as immune checkpoint blockade or adoptive T cell transfer, can lead to durable responses in the clinic, but response rates remain low due to undefined suppression mechanisms. Solid tumors are characterized by a highly acidic microenvironment that might blunt the effectiveness of anti-tumor immunity. In this study, we directly investigated the effects of tumor acidity on the efficacy immunotherapy. An acidic pH environment blocked T cell activation and limited glycolysis in vitro. IFNγ release blocked by acidic pH did not occur at the level of steady-state mRNA, implying that the effect of acidity was post-translational. Acidification did not affect cytoplasmic pH, such that signals transduced by external acidity were like mediated by specific acid-sensing receptors, four of which are expressed by T cells. Notably, neutralizing tumor acidity with bicarbonate monotherapy impaired the growth of some cancer types in mice where it was associated with increased T cell infiltration. Further, combining bicarbonate therapy with anti-CTLA-4, anti-PD1 or adoptive T cell transfer improved antitumor responses in multiple models, including cures in some subjects. Overall, our findings show how raising intratumoral pH through oral buffers therapy can improve responses to immunotherapy, with the potential for immediate clinical translation.
Administration of non-myeloablative chemotherapeutic agents or total body irradiation (TBI) prior to adoptive transfer of tumor-specific T cells may reduce or eliminate immunosuppressive populations such as T regulatory cells (Tregs) and myeloid derived suppressor cells (MDSC). Little is known about these populations during immune reconstitution. This study was designed to understand the reconstitution rate and function of these populations post TBI in melanoma tumor bearing mice. Reconstitution rate and suppressive activity of CD4+CD25+Foxp3+ Tregs and CD11b+Gr1+ MDSC following TBI-induced lymphopenia was measured in B16 melanoma tumor-bearing mice. In order to ablate the rapid reconstitution of suppressive populations, we treated mice with docetaxel (DTX), a known chemotherapeutic agent that targets MDSC, in combination with adoptive T cell transfer and DC immunotherapy. Both Treg and MDSC populations exhibited rapid reconstitution after TBI-induced lymphopenia. While reconstituted Tregs were just as suppressive as Tregs from untreated mice, MDSC demonstrated enhanced suppressive activity of CD8+ T cell proliferation compared to endogenous MDSC from tumor bearing mice. TBI-induced lymphopenia followed by DTX treatment improved the efficacy of adoptive T cell transfer and DC immunotherapy in melanoma-bearing mice, inducing a significant reduction in tumor growth and enhancing survival. Tumor regression correlated with increased CTL activity and persistence of adoptively transferred T cells. Overall, these findings suggest that TBI-induced MDSC are highly immunosuppressive and blocking their rapid reconstitution may improve the efficacy of vaccination strategies and adoptive immunotherapy.
Intralesional (IL) therapy is under investigation to treat dermal and subcutaneous metastatic cancer. Rose bengal (RB) is a staining agent that was originally used by ophthalmologists and in liver function studies. IL injection of RB has been shown to induce regression of injected and uninjected tumors in murine models and clinical trials. In this study, we have shown a mechanism of tumor-specific immune response induced by IL RB. In melanoma-bearing mice, IL RB induced regression of injected tumor and inhibited the growth of bystander lesions mediated by CD8+ T cells. IL RB resulted in necrosis of tumor cells and the release of High Mobility Group Box 1 (HMGB1), with increased dendritic cell (DC) infiltration into draining lymph nodes and the activation of tumor-specific T cells. Treatment of DC with tumor supernatants increased the ability of DCs to stimulate T cell proliferation, and blockade of HMGB1 in the supernatants suppressed DC activity. Additionally, increased HMGB1 levels were measured in the sera of melanoma patients treated with IL RB. These results support the role of IL RB to activate dendritic cells at the site of tumor necrosis for the induction of a systemic anti-tumor immune response.
Intralesional (IL) injection of PV-10 has shown to induce regression of both injected and non-injected lesions in patients with melanoma. To determine an underlying immune mechanism, the murine B16 melanoma model and the MT-901 breast cancer model were utilized. In BALB/c mice bearing MT-901 breast cancer, injection of PV-10 led to regression of injected and untreated contralateral subcutaneous lesions. In a murine model of melanoma, B16 cells were injected into C57BL/6 mice to establish one subcutaneous tumor and multiple lung lesions. Treatment of the subcutaneous lesion with a single injection of IL PV-10 led to regression of the injected lesion as well as the distant B16 melanoma lung metastases. Anti-tumor immune responses were measured in splenocytes collected from mice treated with IL PBS or PV-10. Splenocytes isolated from tumor bearing mice treated with IL PV-10 demonstrated enhanced tumor-specific IFN-gamma production compared to splenocytes from PBS-treated mice in both models. In addition, a significant increase in lysis of B16 cells by T cells isolated after PV-10 treatment was observed. Transfer of T cells isolated from tumor-bearing mice treated with IL PV-10 led to tumor regression in mice bearing B16 melanoma. These studies establish that IL PV-10 therapy induces tumor-specific T cell-mediated immunity in multiple histologic subtypes and support the concept of combining IL PV10 with immunotherapy for advanced malignancies.
Tumor-infiltrating lymphocytes (TIL) has been associated with improved survival in cancer patients. Within the tumor microenvironment, regulatory cells and expression of co-inhibitory immune checkpoint molecules can lead to the inactivation of TIL. Hence, there is a need to develop strategies that disrupt these negative regulators to achieve robust anti-tumor immune responses. We evaluated the blockade of immune checkpoints and their effect on T cell infiltration and function. We examined the ability of TIL to induce tumor-specific immune responses in vitro and in vivo. TIL isolated from tumor bearing mice were tumor-specific and expressed co-inhibitory immune checkpoint molecules. Administration of monoclonal antibodies against immune checkpoints led to a significant delay in tumor growth. However, anti-PD-L1 antibody treated mice had a significant increase in T cell infiltration and IFN-γ production compared to other groups. Adoptive transfer of in vitro expanded TIL from tumors of anti-PD-L1 antibody treated mice led to a significant delay in tumor growth. Blockade of co-inhibitory immune checkpoints could be an effective strategy to improve TIL infiltration and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.