Epstein-Barr virus (EBV) is an oncogenic herpesvirus that has been causally linked to the development of B-cell and epithelial malignancies. Early after infection, EBV induces a transient period of hyperproliferation that is suppressed by the activation of the DNA damage response and a G1/S-phase growth arrest. This growth arrest prevents long-term outgrowth of the majority of infected cells. We developed a method to isolate and characterize infected cells that arrest after this early burst of proliferation and integrated gene expression and metabolic profiling to gain a better understanding of the pathways that attenuate immortalization. We found that the arrested cells have a reduced level of mitochondrial respiration and a decrease in the expression of genes involved in the TCA cycle and oxidative phosphorylation. Indeed, the growth arrest in early infected cells could be rescued by supplementing the TCA cycle. Arrested cells were characterized by an increase in the expression of p53 pathway gene targets, including sestrins leading to activation of AMPK, a reduction in mTOR signaling, and, consequently, elevated autophagy that was important for cell survival. Autophagy was also critical to maintain early hyperproliferation during metabolic stress. Finally, in assessing the metabolic changes from early infection to long-term outgrowth, we found concomitant increases in glucose import and surface glucose transporter 1 (GLUT1) levels, leading to elevated glycolysis, oxidative phosphorylation, and suppression of basal autophagy. Our study demonstrates that oncogene-induced senescence triggered by a combination of metabolic and genotoxic stress acts as an intrinsic barrier to EBV-mediated transformation.Epstein-Barr virus | oncogene-induced senescence | autophagy | B cell | metabolism
Activation of cellular oncogenes as well as infection with tumor viruses can promote aberrant proliferation and activation of the host DNA damage response. Epstein–Barr virus (EBV) infection of primary human B cells induces a transient period of hyper-proliferation, but many of these infected cells succumb to an ataxia telangiectasia mutated/checkpoint kinase 2 (ATM/Chk2)-mediated senescence-like growth arrest. In this study, we assessed the role of DNA replicative stress and nucleotide pool levels in limiting EBV-infected B-cell outgrowth. We found that EBV triggered activation of the ataxia telangiectasia and Rad3-related (ATR) signaling pathway in the early rapidly proliferating cells, which were also significantly more sensitive to inhibition of the ATR pathway than late attenuated proliferating cells. Through nuclear halo assays, we determined that early EBV-infected cells displayed increased replicative stress and DNA damage relative to late proliferating cells. Finally, we found that early after infection, hyper-proliferating B cells exhibited limited deoxyribonucleotide triphosphate (dNTP) pools compared with late proliferating and EBV-immortalized lymphoblastoid cell lines with a specific loss of purine dNTPs. Importantly, supplementation with exogenous nucleosides before the period of hyper-proliferation markedly enhanced B-cell immortalization by EBV and rescued replicative stress. Together our results suggest that purine dNTP biosynthesis has a critical role in the early stages of EBV-mediated B-cell immortalization.
Epstein-Barr virus (EBV) is an oncogenic herpesvirus that is ubiquitous in the human population. Early after EBV infection in vitro, primary human B cells undergo a transient period of hyper-proliferation, which results in replicative stress and DNA damage, activation of the DNA damage response (DDR) pathway and, ultimately, senescence. In this study, we investigated DDR-mediated senescence in early arrested EBV-infected B cells and characterized the establishment of persistent DNA damage foci. We found that arrested EBV-infected B cells exhibited an increase in promyelocytic leukemia nuclear bodies (PML NBs), which predominantly localized to markers of DNA damage, as well as telomeric DNA. Furthermore, arrested EBV-infected B cells exhibited an increase in the presence of telomere dysfunction-induced foci. Importantly, we found that increasing human telomerase reverse transcriptase (hTERT) expression with danazol, a drug used to treat telomere diseases, permitted early EBV-infected B cells to overcome cellular senescence and enhanced transformation. Finally, we report that EBV-infected B cells undergoing hyper-proliferation are more sensitive than lymphoblastoid cell lines (LCLs) to inhibition of Bloom syndrome-associated helicase, which facilitates telomere replication. Together, our results describe the composition of persistent DNA damage foci in the early stages of EBV infection and define key regulators of this barrier to long-term outgrowth.
Five DNA viruses are known to cause cancers in humans. These are human papillomavirus, hepatitis B virus, Epstein-Barr virus, Kaposi sarcoma herpes virus and Merkel cell polyomavirus. It is estimated that, together, these are responsible for well over a million new cases of cancer worldwide annually. Also of interest is adenovirus: although it does not cause cancer in humans, it produces malignant tumours in experimental animals. This makes it a very powerful tool to study the mechanisms of viral oncogenesis. In recent years great strides have been made in our understanding of the molecular biology of these DNA viruses, and the virus-host interactions that drive carcinogenicity. These new data are essential first steps in the development of novel therapeutic strategies.In this timely book, expert authors review the most important current research in this rapidly growing field. Topics covered range from an overview of the contribution of DNA tumour viruses to the cancer burden worldwide, and the molecular pathogenesis of virus driven cancers to vaccine development. This volume will serve as a valuable reference source for everyone working in the field, both experts and students, in academia, government, and biotechnology companies. It is also a must-read for anyone with an interest in viral tumourigenesis and an important acquisition for all microbiology libraries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.