Many compilers, synthesizers, and theorem provers rely on rewrite rules to simplify expressions or prove equivalences. Developing rewrite rules can be difficult: rules may be subtly incorrect, profitable rules are easy to miss, and rulesets must be rechecked or extended whenever semantics are tweaked. Large rulesets can also be challenging to apply: redundant rules slow down rule-based search and frustrate debugging. This paper explores how equality saturation, a promising technique that uses e-graphs to apply rewrite rules, can also be used to infer rewrite rules. E-graphs can compactly represent the exponentially large sets of enumerated terms and potential rewrite rules. We show that equality saturation efficiently shrinks both sets, leading to faster synthesis of smaller, more general rulesets. We prototyped these strategies in a tool dubbed Ruler. Compared to a similar tool built on CVC4, Ruler synthesizes 5.8× smaller rulesets 25× faster without compromising on proving power. In an end-to-end case study, we show Ruler-synthesized rules which perform as well as those crafted by domain experts, and addressed a longstanding issue in a popular open source tool.
In program synthesis there is a well-known trade-off between concise and strong specifications: if a specification is too verbose, it might be harder to write than the program; if it is too weak, the synthesised program might not match the user's intent. In this work we explore the use of annotations for restricting memory access permissions in program synthesis, and show that they can make specifications much stronger while remaining surprisingly concise. Specifically, we enhance Synthetic Separation Logic (SSL), a framework for synthesis of heap-manipulating programs, with the logical mechanism of read-only borrows. We observe that this minimalistic and conservative SSL extension benefits the synthesis in several ways, making it more (a) expressive (stronger correctness guarantees are achieved with a modest annotation overhead), (b) effective (it produces more concise and easier-to-read programs), (c) efficient (faster synthesis), and (d) robust (synthesis efficiency is less affected by the choice of the search heuristic). We explain the intuition and provide formal treatment for read-only borrows. We substantiate the claims (a)-(d) by describing our quantitative evaluation of the borrowing-aware synthesis implementation on a series of standard benchmark specifications for various heap-manipulating programs.
Past work on optimizing fabrication plans given a carpentry design can provide Pareto-optimal plans trading off between material waste, fabrication time, precision, and other considerations. However, when developing fabrication plans, experts rarely restrict to a single design , instead considering families of design variations , sometimes adjusting designs to simplify fabrication. Jointly exploring the design and fabrication plan spaces for each design is intractable using current techniques. We present a new approach to jointly optimize design and fabrication plans for carpentered objects. To make this bi-level optimization tractable, we adapt recent work from program synthesis based on equality graphs (e-graphs), which encode sets of equivalent programs. Our insight is that subproblems within our bi-level problem share significant substructures. By representing both designs and fabrication plans in a new bag of parts (BOP) e-graph, we amortize the cost of optimizing design components shared among multiple candidates. Even using BOP e-graphs, the optimization space grows quickly in practice. Hence, we also show how a feedback-guided search strategy dubbed Iterative Contraction and Expansion on E-graphs (ICEE) can keep the size of the e-graph manageable and direct the search towards promising candidates. We illustrate the advantages of our pipeline through examples from the carpentry domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.