Quercetin (QC) is a typical plant flavonoid, possesses diverse pharmacologic effects including antiinflammatory, antioxidant, anti-cancer, anti-anaphylaxis effects and against aging. However, the application of QC in pharmaceutical field is limited due to its poor solubility, low bioavailability, poor permeability and instability. To improve the bioavailability of QC, numerous approaches have been undertaken, involving the use of promising drug delivery systems such as inclusion complexes, liposomes, nanoparticles or micelles, which appear to provide higher solubility and bioavailability. Enhanced bioavailability of QC in the near future is likely to bring this product to the forefront of therapeutic agents for treatment of human disease.
Purpose
This study aimed to develop a novel methoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA)/D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) mixed micelle drug delivery system to improve lamotrigine (LTG) distribution in the hippocampus.
Methods
LTG-loaded mPEG-PLA/TPGS mixed micelles and LTG-loaded mPEG-PLA micelles were formulated, and their characteristics, particle size, surface morphology, and release behavior in vitro were researched. Then, a microdialysis sampling technique coupled with two validated chromatographic systems was developed for the continuous measurement of the protein-unbound form of LTG in the rat plasma and hippocampus after administering two kinds of micelles and LTG solution intranasally.
Results
The drug loading and mean size of LTG-loaded micelles and LTG-loaded mixed micelles prepared with optimal formulation were 36.44%±0.14%, 39.28%±0.26%, 122.9, and 183.5 nm, respectively, with a core–shell structure. The cumulative release rate in vivo of LTG-loaded mixed micelles was 84.21% at 24 hours and showed more sustained release while that of LTG-loaded micelles was 80.61% at 6 hours. The
T
max
and area under concentration-time curve from zero to time of last quantifiable concentration of LTG solution, LTG-loaded micelles, and LTG-loaded mixed micelles were 55, 35, and 15 minutes and about 5,384, 16,500, and 25,245 (min⋅μg)/L in the hippocampus, respectively.
Conclusion
The results revealed that LTG-loaded mPEG-PLA/TPGS mixed micelles enhanced the absorption of LTG at the nasal cavity and reduced the efflux of LTG in the brain, suggesting that the function of TPGS inhibited P-glycoprotein and LTG-loaded mPEG-PLA/TPGS mixed micelles had the potential to overcome refractory epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.