Infertility affects approximately 15% of the couples wanting to conceive. In 30 - 40% of the cases the aetiology of male infertility remains unknown and is called idiopathic male infertility. When assisted reproductive technologies are used to obtain pregnancy, an adequate (epi)genetic diagnosis of male infertility is of major importance to evaluate if a genetic abnormality will be transmitted to the offspring. In addition, there is need for better diagnostic seminal biomarkers to assess the success rates of these assisted reproductive technologies. This review investigated the possible causes and molecular mechanisms underlying male idiopathic infertility by extensive literature searches of: (i) causal gene mutations; (ii) proteome studies of spermatozoa from idiopathic infertile men;(iii) the role of epigenetics; (iv) post-translational modifications; and (v) sperm DNA fragmentation in infertile men. In conclusion, male infertility is a complex, multi-factorial disorder and the underlying causes often remain unknown. Further research on the (epi)genetic and molecular defects in spermatogenesis and sperm function is necessary to improve the diagnosis and to develop more personalized treatments of men with idiopathic infertility.
Background: Fibroblast activation protein (FAP) is a proline selective serine protease that is overexpressed in tumor stroma and in lesions of many other diseases that are characterized by tissue remodeling. In 2014, a most potent FAP-inhibitor (referred to as UAMC1110) with low nanomolar FAP-affinity and high selectivity toward related enzymes such as prolyl oligopeptidase (PREP) and the dipeptidyl-peptidases (DPPs): DPP4, DPP8/9 and DPP2 were developed. This inhibitor has been adopted recently by other groups to create radiopharmaceuticals by coupling bifunctional chelatorlinker systems. Here, we report squaric acid (SA) containing bifunctional DATA 5m and DOTA chelators based on UAMC1110 as pharmacophor. The novel radiopharmaceuticals DOTA.SA.FAPi and DATA 5m .SA.FAPi with their non-radioactive derivatives were characterized for in vitro inhibitory efficiency to FAP and PREP, respectively and radiochemical investigated with gallium-68. Further, first proof-ofconcept in vivo animal study followed by ex vivo biodistribution were determined with [ 68 Ga]Ga-DOTA.SA.FAPi. Results: [ 68 Ga]Ga-DOTA.SA.FAPi and [ 68 Ga]Ga-DATA 5m .SA.FAPi showed high complexation > 97% radiochemical yields after already 10 min and high stability over a period of 2 h. Affinity to FAP of DOTA.SA.FAPi and DATA 5m .SA.FAPi and its nat Ga and nat Lu-labeled derivatives were excellent resulting in low nanomolar IC 50 values of 0.7-1.4 nM. Additionally, all five compounds showed low affinity for the related protease PREP (high IC 50 with 1.7-8.7 μM). First proof-of-principle in vivo PET-imaging animal studies of the [ 68 Ga]Ga-DOTA.SA.FAPi precursor in a HT-29 human colorectal cancer xenograft mouse model indicated promising results with high accumulation in tumor (SUV mean of 0.75) and low background signal. Ex vivo biodistribution showed highest uptake in tumor (5.2%ID/g) at 60 min post injection with overall low uptake in healthy tissues.
Fibroblast activation protein (FAP) is a proline-selective serine protease. It is hardly expressed in healthy adult tissue but upregulated in tissue remodeling sites associated with several diseases including epithelial cancer types, atherosclerosis, arthritis and fibrosis. Ongoing research aims at clinical implementation of FAP as a biomarker for these diseases. Several immunochemical methods that quantify FAP expression have been reported. An alternative/complementary approach focuses on quantification of FAP’s enzymatic activity. Developing an activity-based assay for FAP has nonetheless proven challenging because of selectivity issues with respect to prolyl oligopeptidase (PREP). Here, we present substrate-type FAP probes that are structurally derived from a FAP-inhibitor (UAMC1110) that we published earlier. Both cleavage efficiency and FAP-selectivity of the best compounds in the series equal or surpass the most advanced peptide-based FAP substrates reported to date. Finally, proof-of-concept is provided that 4-aminonaphthol containing probes can spatially localize FAP activity in biological samples.
A B S T R A C TGlobins are among the best investigated proteins in biological and medical sciences and represent a prime tool for the study of the evolution of genes and the structure-function relationship of proteins. Here, we explore the recombinant expression of globins in three different expression systems: Escherichia coli, Pichia pastoris and the baculovirus infected Spodoptera frugiperda. We expressed two different human globin types in these three expression systems: I) the well-characterized neuroglobin and II) the uncharacterized, circular permutated globin domain of the large chimeric globin androglobin. It is clear from the literature that E.coli is the most used expression system for expression and purification of recombinant globins. However, the major disadvantage of E. coli is the formation of insoluble aggregates. We experienced that, for more complex multi-domain globins, like the chimeric globin androglobin, it is recommended to switch to a higher eukaryotic expression system.
Acute generalized exanthematous pustulosis (AGEP) is a rare cutaneous reaction, which in most cases, is related to medication. Pemetrexed is an antifolate drug, approved for treatment of metastatic non-small-cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM). We present a case of AGEP caused by pemetrexed, and a recurrence of this eruption after re-introduction of pemetrexed despite use of corticosteroids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.