Abstract:The primary attraction of IaaS is providing elastic resources on demand. It becomes imperative that IaaS-users have an effective methodology for learning what resources they require, how many resources and for how long they need. However, the heterogeneity of resources, the diversity resource demands of different cloud applications and the variation of application-user behaviors pose IaaS-users big challenge. In this paper, we purpose a unified resource demand forecasting model suiting for different applications, various resources and diverse time-varying workload patterns. With the model, taking input from parameterized applications, resources and workload scenarios, the corresponding resources demands during any time interval can be deduced as output. The experiments configure concrete functions and parameters to help understanding the above model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.