Noninvasive behavioral tracking of animals during experiments is crucial to many scientific pursuits. Extracting the poses of animals without using markers is often essential for measuring behavioral effects in biomechanics, genetics, ethology & neuroscience. Yet, extracting detailed poses without markers in dynamically changing backgrounds has been challenging. We recently introduced an open source toolbox called DeepLabCut that builds on a state-of-the-art human pose estimation algorithm to allow a user to train a deep neural network using limited training data to precisely track user-defined features that matches human labeling accuracy. Here, with this paper we provide an updated toolbox that is self contained within a Python package that includes new features such as graphical user interfaces and active-learning based network refinement. Lastly, we provide a step-by-step guide for using DeepLabCut.>> deeplabcut.create_labeled_video(config_path,['/analysis/project /videos/reachingvideo1.avi','/analysis/project/videos/reachingvideo2.avi'])This function has various parameters, in particular the user can set the colormap, the dotsize, and alphavalue of the labels in config.yaml file.
Noninvasive behavioral tracking of animals during experiments is crucial to many scientific pursuits. Extracting the poses of animals without using markers is often essential for measuring behavioral effects in biomechanics, genetics, ethology & neuroscience. Yet, extracting detailed poses without markers in dynamically changing backgrounds has been challenging. We recently introduced an open source toolbox called DeepLabCut that builds on a state-of-the-art human pose estimation algorithm to allow a user to train a deep neural network using limited training data to precisely track user-defined features that matches human labeling accuracy. Here, with this paper we provide an updated toolbox that is self contained within a Python package that includes new features such as graphical user interfaces and active-learning based network refinement. Lastly, we provide a step-by-step guide for using DeepLabCut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.