Apigenin (Api), a mainly bioactive component of Apium graveolens L. var. dulce DC. (a traditional Chinese medicinal herb), possesses a wide range of biological activities, including antioxidant effects. It also has been shown to associate with lower prevalence of cardiovascular diseases, but its mechanisms of action remain unclear. The aim of the present study is to investigate the role of Api in isolated rat heart model of ischemia/reperfusion (I/R). Langendorff-perfused isolated rat hearts were used in our study. Api was added to the perfusate before ischemia and during reperfusion in the isolated pulsed rat heart exposed to 30-min ischemia followed by 50-min reperfusion. The treatment with Api conferred a cardioprotective effect, and the treated hearts demonstrated an improved ischemic cardiac functional recovery, a decreased myocardial infarct size, a reduced activities of creatine kinase isoenzyme and lactate dehydrogenase in the coronary flow, a reduced number of apoptotic cardiomyocytes, a reduced activity of caspase-3, up-regulation of the anti-apoptotic protein Bcl-2 and down-regulation of the pro-apoptotic protein Bax. In addition, Api inhibited the phosphorylation of p38 MAPKS during I/R. In conclusion, these observations provide preliminary evidence that Api can protect cardiomyocytes from I-/R-induced injury, at least partially, through the inhibition of p38 MAPKS signaling pathway.
Infection may result in early abnormalities in respiratory movement, and the mechanism may involve central and peripheral factors. Peripheral mechanisms include lung injury and alterations in electrolytes and body temperature, but the central mechanisms remain unclear. In the present study, brainstem slices harvested from rats were stimulated with lipopolysaccharide at different doses. Central respiratory activities as demonstrated by electrophysiological activity of the hypoglossal rootlets were examined and the mechanisms were investigated by inhibiting nitric oxide synthase and ATP-sensitive potassium channels. As a result, 0.5 µg/ml lipopolysaccharide mainly caused inhibitory responses in both the frequency and the output intensity, while 5 µg/ml lipopolysaccharide caused an early frequency increase followed by delayed decreases in both the frequency and the output intensity. At both concentrations the inhibitory responses were fully reversed by inhibition of nitric oxide synthase with Nω-nitro-L-arginine methyl ester hydrochloride (20 µM), and by inhibition of ATP- sensitive potassium channels with glybenclamide (100 µM). These results show that direct lipopolysaccharide challenge altered central respiratory activity in dose- and time- related manners. Nitric oxide synthase and ATP-sensitive potassium channels may be involved in the respiratory changes.
SummaryNuclear factor (NF)-jB (NFKB1)-94ins ⁄ del is an important polymorphism that affects promoter activity of the NFKB1 gene and is potentially associated with several inflammatory diseases. We investigated the association of this polymorphism with lung injury after cardiac surgery and cardiopulmonary bypass in a prospective cohort study of 283 patients. Genotyping was performed by high resolution melting analysis; analysis indicated no association of NFKB1 with postoperative lung injury (p = 0.064). Relative risks of the del allele and the del ⁄ del genotype were 1.34 (95% CI 1.02-1.75) and 1.74 (95% CI 1.00-3.05) respectively. Logistic regression analysis (with factors including age, peripheral vascular disease and surgical duration as risk factors of lung injury after cardiac surgery with cardiopulmonary bypass) also failed to confirm that the NFKB1 genotype is influential for lung injury (p = 0.113). We conclude that, contrary to some other evidence, the NFKB1-94ins ⁄ del polymorphism is not associated with lung injury after cardiac surgery with cardiopulmonary bypass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.