The rice disease bakanae, caused by Fusarium fujikuroi Nirenberg, has been present in Taiwan for over a century. To better understand the genetic diversity and structure of F. fujikuroi, a set of 16 polymorphic simple sequence repeat (SSR) markers were newly developed and used to analyze 637 F. fujikuroi isolates collected in 14 cities or counties around Taiwan from 1996 to 2013. On the basis of Bayesian clustering, the isolates were classified into four highly differentiated clusters: cluster B likely derived from the more widespread and genetically diversified clusters A or C, and cluster D was restricted to four cities or counties and may have been introduced from unknown sources genetically distinct from clusters A, B, and C. The coexistence of both mating types (MAT1-1:MAT1-2 = 1:1.88) and the highly diversified vegetative compatibility groups (VCG) (16 VCG among the 21 assessed isolates) suggest the likelihood of sexual reproduction in the field. However, the biased mating type ratios and linkage disequilibrium in the population suggest nonrandom mating between individuals. A significant pattern of isolation by distance was also detected, which implies a geographical restricted gene flow and low dissemination ability of F. fujikuroi. Evaluation of 24 representative isolates on eight rice varieties revealed differential levels of virulence, however no clear pattern of specific variety x isolate interaction was observed. Investigations of the differences in virulence and fungicide sensitivity between 8 early isolates (1998 and 2002) and 52 recent isolates (2012) indicate the evolution of increased resistance to the fungicide prochloraz in F. fujikuroi in Taiwan.
The effects of ultraviolet (UV)-ozone treatment on solution-processed amorphous InGaZnO (IGZO) thin-film transistors (TFTs) grown using the sol-gel method are investigated. The UV-ozone-treated TFT devices showed an improved field-effect mobility of 1.52 cm V s and a subthreshold slope (S) of 0.42 V/dec compared to those of IGZO TFT devices with only thermal annealing (0.75 cm V s and 0.84 V/dec, respectively). The enhancement of the UV-ozone-treated TFTs is mostly attributed to the increased film packing density, higher Al S/D electrodes adhesion properties, reduced oxygen-related defects, and less electron trapping of the IGZO thin films, which improved the TFT performance and bias stress stability.Index Terms-Amorphous InGaZnO (IGZO), sol-gel, ultraviolet (UV)-ozone.
Rice blast is a serious threat to global rice production. Large-scale and long-term cultivation of rice varieties with a single blast resistance gene usually leads to breakdown of resistance. To effectively control rice blast in Taiwan, marker-assisted backcrossing was conducted to develop monogenic lines carrying different blast resistance genes in the genetic background of an elite japonica rice cultivar, ‘Kaohsiung 145’ (KH145). Eleven International Rice Research Institute (IRRI)-bred blast-resistant lines (IRBLs) showing broad-spectrum resistance to local Pyricularia oryzae isolates were used as resistance donors. Sequencing analysis revealed that the recurrent parent, KH145, does not carry known resistance alleles at the target Pi2/9, Pik, Pita, and Ptr loci. For each IRBL x KH145 cross, we screened 21–370 (average of 108) plants per generation from the BC1F1 to BC3F1/BC4F1 generation. A total of 1499 BC3F2/BC4F2 lines carrying homozygous resistance alleles were selected and self-crossed for 4–6 successive generations. The derived lines were also evaluated for background genotype using genotyping by sequencing, for blast resistance under artificial inoculation and natural infection conditions, and for agronomic performance in multiple field trials. In Chiayi and Taitung blast nurseries in 2018–2020, Pi2, Pi9, and Ptr conferred high resistance, Pi20 and Pik-h moderate resistance, and Pi1, Pi7, Pik-p, and Pik susceptibility to leaf blast; only Pi2, Pi9, and Ptr conferred effective resistance against panicle blast. The monogenic lines showed similar agronomic traits, yield, and grain quality as KH145, suggesting the potential of growing a mixture of lines to achieve durable resistance in the field.
Rice blast caused by Magnaporthe oryzae is a dangerous threat to rice production and food security worldwide. Breeding and proper deployment of resistant varieties are effective and environment-friendly strategies to manage this notorious disease. However, highly dynamic and quickly evolved rice blast pathogen population in the field has made disease control with resistance germplasms more challenging. Therefore, continued monitor of pathogen dynamics and application of effective resistance varieties are critical tasks to prolong or sustain field resistance. Here, we report a team project involved evaluation of rice blast resistance genes and surveillance of M. oryzae field population in Taiwan. A set of IRBLs (International Rice Research Institute-bred blast-resistant lines) carrying single blast resistance genes were utilized to monitor the field effectiveness of rice blast resistance. Resistance genes such as Ptr (formerly Pita2) and Pi9 exhibited best and durable resistance against rice blast fungus population in Taiwan. Interestingly, IRBLb-B line harboring Pib gene with good field protection has recently shown susceptible lesions in some locations. To dissect the genotypic features of virulent isolates against Pib resistance gene, M. oryzae isolates were collected and analyzed. Screening of AvrPib locus revealed that majority of field isolates still maintained the wild type AvrPib status, but eight virulent genotypes were found. Pot3 insertion appeared to be a major way to disrupt the AvrPib avirulence function. Interestingly, a novel AvrPib double allele genotype among virulent isolates was first identified. Pot2 rep-PCR fingerprinting analysis indicated mutation events may occur independently among different lineages in different geographic locations of Taiwan. This study provides our surveillance experience of rice blast disease and serves as the foundation to sustain rice production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.