Long-term training leads experts to develop a focused and efficient organization of task-related neural networks. “Neural efficiency” hypothesis posits that neural activity is reduced in experts. Here we tested the following working hypotheses: compared to non-athletes, athletes showed lower cortical activation in task-sensitive brain areas during the processing of sports related and sports unrelated visuo-spatial tasks. To address this issue, cortical activation was examined with fMRI in 14 table tennis athletes and 14 non-athletes while performing the visuo-spatial tasks. Behavioral results showed that athletes reacted faster than non-athletes during both types of the tasks, and no accuracy difference was found between athletes and non-athletes. fMRI data showed that, athletes exhibited less brain activation than non-athletes in the bilateral middle frontal gyrus, right middle orbitofrontal area, right supplementary motor area, right paracentral lobule, right precuneus, left supramarginal gyrus, right angular gyrus, left inferior temporal gyrus, left middle temporal gyrus, bilateral lingual gyrus and left cerebellum crus. No region was significantly more activated in the athletes than in the non-athletes. These findings possibly suggest that long-standing training prompt athletes develop a focused and efficient organization of task-related neural networks, as a possible index of “neural efficiency” in athletes engaged in visuo-spatial tasks, and this functional reorganization is possibly task-specific.
The purpose of this study is to investigate the effects of different types of acute exercise on cognitive function and cerebral oxygenation. A within-subject design was adopted. In total, 20 healthy older adults were enrolled in the study. They came to the laboratory individually on four separate days and completed four conditions of activity. Four conditions were sedentary reading control (RC), cognitive exercise (CE), physical exercise (PE) and cognitive + physical exercise (CE + PE). During these visits, participants completed the Stroop task before and immediately after the experimental condition, which consisted of 15 min of aerobic exercise, verbal fluency task (VFT), and dual task. The Stroop task included the following two conditions: a naming condition and an executive condition. The fNIRS is an optical method using near-infrared light to measure relative changes of oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin in the cortex. The results indicate that acute exercise facilitates performance for executive tasks, not only combined cognition, but also the different results between combined exercise and single exercise. The fNIRS findings showed that acute single exercise influences oxygenation for executive tasks but not for naming tasks. Greater improvement was observed in the post-exercise session of combined exercise during the modified Stroop. These findings demonstrate that acute single exercise, single cognition exercise, and combined exercise enhanced the performance of the inhibition control task. Only acute combined exercise has a general facilitative effect on inhibition control. Combined exercise was shown to be superior to single exercise for task-efficient cerebral oxygenation and improved oxygen utilization during cortical activation in older individuals. Also, to maximize the performance of cognition it may be important for older adults to take part in more cognitive demand exercise or take more kinds of exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.