BackgroundDeafness-dystonia-optic neuronopathy (DDON) syndrome is a progressive X-linked recessive disorder characterised by deafness, dystonia, ataxia and reduced visual acuity. The causative gene deafness/dystonia protein 1 (DDP1)/translocase of the inner membrane 8A (TIMM8A) encodes a mitochondrial intermembrane space chaperon. The molecular mechanism of DDON remains unclear, and detailed information on animal models has not been reported yet.Methods and resultsWe characterized a family with DDON syndrome, in which the affected members carried a novel hemizygous variation in the DDP1 gene (NM_004085.3, c.82C>T, p.Q28X). We then generated a mouse line with the hemizygous mutation (p.I23fs49X) in the Timm8a1 gene using the clustered regularly interspaced short palindromic repeats /Cas9 technology. The deficient DDP1 protein was confirmed by western blot assay. Electron microscopic analysis of brain samples from the mutant mice indicated abnormal mitochondrial structure in several brain areas. However, Timm8a1I23fs49X/y mutation did not affect the import of mitochondria inner member protein Tim23 and outer member protein Tom40 as well as the biogenesis of the proteins in the mitochondrial oxidative phosphorylation system and the manganese superoxide dismutase (MnSOD / SOD-2). The male mice with Timm8a1I23fs49X/y mutant exhibited less weight gain, hearing impairment and cognitive deficit.ConclusionOur study suggests that frameshift mutation of the Timm8a1 gene in mice leads to an abnormal mitochondrial structure in the brain, correlating with hearing and memory impairment. Taken together, we have successfully generated a mouse model bearing loss-of-function mutation in Timm8a1.
The inferior colliculus (IC) is known as a neuronal structure involved in the integration of acoustic information in the ascending auditory pathway. However, the processing of paired acoustic stimuli containing different sound types, especially when they are applied closely, in the IC remains poorly studied. We here firstly investigated the IC neuronal response to the paired stimuli comprising click and pure tone with different inter-stimulus (click-tone) intervals using in vivo loose-patch recordings in anesthetized BALB/c mice. It was found that the total acoustic evoked spike counts decreased under certain click-tone interval conditions on some neurons with or without click-induced supra-threshold responses. Application of click could enhance the minimum threshold of the neurons responding to the tone in a pair without changing other characteristics of the neuronal tone receptive fields. We further studied the paired acoustic stimuli evoked excitatory/inhibitory inputs, IC neurons received, by holding the membrane potential at -70/0 mV using in vivo whole-cell voltage-clamp techniques. The curvature and peak amplitude of the excitatory/inhibitory post-synaptic current (EPSC/IPSC) could be almost unchanged under different inter-stimulus interval conditions. Instead of showing the summation of synaptic inputs, most recorded neurons only had the EPSC/IPSC with the amplitude similar as the bigger one evoked by click or tone in a pair when the inter-stimulus interval was small. We speculated that the IC could inherit the paired click-tone information which had been integrated before reaching it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.