We provide the first direct evidence that FD is characterized by functional and structural abnormalities within the submucous ganglion plexus, which may be of future predictive and diagnostic value in the treatment of FD patients.
HuC/D is not merely a pan-neuronal marker but its subcellular localization also reflects the condition of a neuron at the time of fixation. The functional meaning of this change in HuC/D localization is not entirely clear, but disturbance in O2 supply in combination with the support of enteric glial cells seems to play a crucial role. The molecular consequence of changes in HuC/D expression needs to be further investigated.
Parkinson's disease (PD) is a neurodegenerative disease with motor and non-motor symptoms, including constipation. Therefore, several studies have investigated the gastrointestinal tract, and more specifically the enteric nervous system (ENS), in search of an early biomarker of PD. Besides α-synuclein aggregation, mitochondrial dysfunction and dysregulation of intracellular Ca2+ concentration probably contribute to the pathogenesis of PD. Here we assessed neuronal and mitochondrial functioning in primary enteric neurons of PD patients and their healthy partners as controls. Using a unique combination of live microscopy techniques, applied to routine duodenum biopsies, we were able to record neuronal Ca2+ responses and mitochondrial membrane potential in these nerve tissues. We found that submucous neurons were not affected in PD patients, which suggests that these neurons are not involved in the pathogenesis or the gastrointestinal symptoms of PD. Our study provides for the first time functional information on live neurons in PD patients.DOI:
http://dx.doi.org/10.7554/eLife.26850.001
The intake of free fructose has increased substantially since the development of high-fructose corn syrup. This has not only been associated with metabolic disorders but recent evidence also indicates that chronic fructose consumption can affect neuronal and cognitive function. In this study we investigated the effects of fructose consumption on serotonergic signaling and neuronal activity in the mouse submucous plexus. Male mice were put on a control or fructose (23% solution) diet for 6 weeks or were assigned to a recovery group that received normal water (2 weeks) after 4 weeks of fructose. At the end of the diet, gene expressions and enteric neuronal activity, after depolarization with high K(+) and 5-HT, were measured using Ca(2+) imaging and RT-qPCR, respectively. Even in the lack of gain weight and the absence of changes in duodenal permeability, the total number of 5-HT-responding neurons and the depolarization and 5-HT-evoked Ca(2+) amplitudes were significantly lower after fructose consumption. Expression of synaptobrevin CaV 2.1 and CaV 2.2 mRNA did not differ after fructose intake; however, CaV 2.1 mRNA levels were significantly higher in the recovery animals. SERT mRNA concentration, isolated from submucosal plexus containing mucosal epithelium, was significantly decreased after fructose consumption. Chronic fructose consumption impairs serotonergic signaling in the mouse submucous plexus, prior to weight gain and detectable intestinal permeability problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.