Resting-state functional magnetic resonance imaging (rfMRI) allows one to study functional connectivity in the brain by acquiring fMRI data while subjects lie inactive in the MRI scanner, and taking advantage of the fact that functionally related brain regions spontaneously co-activate. rfMRI is one of the two primary data modalities being acquired for the Human Connectome Project (the other being diffusion MRI). A key objective is to generate a detailed in vivo mapping of functional connectivity in a large cohort of healthy adults (over 1,000 subjects), and to make these datasets freely available for use by the neuroimaging community. In each subject we acquire a total of one hour of whole-brain rfMRI data at 3 Tesla, with a spatial resolution of 2×2×2mm and a temporal resolution of 0.7s, capitalizing on recent developments in slice-accelerated echo-planar imaging. We will also scan a subset of the cohort at higher field strength and resolution. In this paper we outline the work behind, and rationale for, decisions taken regarding the rfMRI data acquisition protocol and pre-processing pipelines, and present some initial results showing data quality and example functional connectivity analyses.
Summary Humans can see and name thousands of distinct object and action categories, so it is unlikely that each category is represented in a distinct brain area. A more efficient scheme would be to represent categories as locations in a continuous semantic space mapped smoothly across the cortical surface. To search for such a space, we used functional magnetic resonance imaging (fMRI) to measure human brain activity evoked by natural movies. We then used voxel-wise models to examine the cortical representation of 1705 object and action categories. The first few dimensions of the underlying semantic space were recovered from the fit models by principal components analysis. Projection of the recovered semantic space onto cortical flat maps shows that semantic selectivity is organized into smooth gradients that cover much of visual and non-visual cortex. Furthermore, both the recovered semantic space and the cortical organization of the space are shared across different individuals.
Summary Quantitative modeling of human brain activity can provide crucial insights about cortical representations [1, 2], and can form the basis for brain decoding devices [3–5]. Recent functional magnetic resonance imaging (fMRI) studies have modeled brain activity elicited by static visual patterns, and have shown that it is possible to reconstruct these images from brain activity measurements [6–8]. However, blood oxygen level dependent (BOLD) signals measured using fMRI are very slow [9], so it has been difficult to model brain activity elicited by dynamic stimuli such as natural movies. Here we present a new motion-energy [10, 11] encoding model that largely overcome this limitation. Our motion-energy model describes fast visual information and slow hemodynamics by separate components. We recorded BOLD signals in occipito-temporal visual cortex of human subjects who passively watched natural movies, and fit the encoding model separately to individual voxels. Visualization of the fit models reveals how early visual areas represent moving stimuli. To demonstrate the power of our approach we also constructed a Bayesian decoder [8], by combining estimated encoding models with a sampled natural movie prior. The decoder provides remarkable reconstructions of natural movies, capturing the spatio-temporal structure of the viewed movie. These results demonstrate that dynamic brain activity measured under naturalistic conditions can be decoded using current fMRI technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.