Like poliovirus infection, severe infection with enterovirus 71 (EV71) can cause neuropathology. Unlike poliovirus, EV71 is often associated with hand-foot-and-mouth disease (HFMD). Here we established three mouse models for experimental infection with the same clinical isolate of EV71. The NOD/SCID mouse model is unique for the development of skin rash, an HFMD-like symptom. While the NOD/SCID mice developed limb paralysis and death at near-100% efficiency, the gamma interferon receptor knockout (ifngr KO) and stat-1 knockout mice exhibited paralysis and death rates near 78% and 30%, respectively. Productive infection with EV71 depends on the viral dose, host age, and inoculation route. Levels of infectious EV71, and levels of VP1-specific RNA and protein in muscle, brain, and spinal cord, were compared side by side between the NOD/SCID and stat-1 knockout models before, during, and after disease onset. Spleen fibrosis and muscle degeneration are common in the NOD/SCID and stat-1 knockout models. The main differences between these two models include their disease manifestations and cytokine/ chemokine profiles. The pathology of the NOD/SCID model includes (i) inflammation and expression of viral VP1 antigen in muscle, (ii) increased neutrophil levels and decreased eosinophil and lymphocyte levels, and (iii) hair loss and skin rash. The characteristic pathology of the stat-1 knockout model includes (i) a strong tropism of EV71 for the central nervous system, (ii) detection of VP1 protein in the Purkinje layer of cerebellar cortex, pons, brain stem, and spinal cord, (iii) amplification of microglial cells, and (iv) dystrophy of intestinal villi. Our comparative studies on these new models with oral or intraperitoneal (i.p.) infection underscored the contribution of host immunity, including the gamma interferon receptor, to EV71 pathogenesis. IMPORTANCEIn the past decade, enterovirus 71 (EV71) has emerged as a major threat to public health in the Asia-Pacific region. Disease manifestations include subclinical infection, common-cold-like syndromes, hand-foot-and-mouth disease (HFMD), uncomplicated brain stem encephalitis, severe dysregulation of the autonomic nerve system, fatal pulmonary edema, and cardiopulmonary collapse. To date, no effective vaccine or treatment is available. A user-friendly and widely accessible animal model for researching EV71 infection and pathogenesis is urgently needed by the global community, both in academia and in industry.
Hepatitis B virus (HBV) DNA replication occurs within the HBV icosahedral core particles. HBV core protein (HBc) contains an arginine-rich domain (ARD) at its carboxyl terminus. This ARD domain of HBc 149-183 is known to be important for viral replication but not known to have a structure. Recently, nucleocapsid proteins of several viruses have been shown to contain nucleic acid chaperone activity, which can facilitate structural rearrangement of viral genome. Major features of nucleic acid chaperones include highly basic amino acid residues and flexible protein structure. To test the nucleic acid chaperone hypothesis for HBc ARD, we first used the disassembled full-length HBc from Escherichia coli to analyze the nucleic acid annealing and strand displacement activities. To exclude the potential contamination of chaperones from E. coli, we designed synthetic HBc ARD peptides with different lengths and serine phosphorylations. We demonstrated that HBc ARD peptide can behave like a bona fide nucleic acid chaperone and that the chaperone activity depends on basic residues of the ARD domain. The loss of chaperone activity by arginine-to-alanine substitutions in the ARD can be rescued by restoring basic residues in the ARD. Furthermore, the chaperone activity is subject to regulation by phosphorylation and dephosphorylation at the HBc ARD. Interestingly, the HBc ARD can enhance in vitro cleavage activity of RNA substrate by a hammerhead ribozyme. We discuss here the potential significance of the HBc ARD chaperone activity in the context of viral DNA replication, in particular, at the steps of primer translocations and circularization of linear replicative intermediates. IMPORTANCEHepatitis B virus is a major human pathogen. At present, no effective treatment can completely eradicate the virus from patients with chronic hepatitis B. We report here a novel chaperone activity associated with the viral core protein. Our discovery could lead to a new drug design for more effective treatment against hepatitis B virus in the future. Hepatitis B virus (HBV) is a human pathogen that chronically infects about 350 million people worldwide. Chronic HBV carriers have an increased risk of developing cirrhosis and hepatocellular carcinoma (1-4). As an enveloped DNA virus, HBV reverse transcribes an encapsidated pregenomic RNA (pgRNA) to generate a double-strand DNA genome with a relaxed circular (RC) conformation (rcDNA).The full-length HBV core protein (HBc) consists of 183 to 185 amino acid residues. It contains two distinct domains connected by a hinge region. The N terminus is an assembly domain of HBc 1-140, and the C terminus is the arginine-rich domain (ARD) of HBc 150-183 (5, 6) (see Fig. 2A). The ARD is dispensable for capsid assembly in Escherichia coli but is required for pgRNA packaging (5,7,8). The ARD can be phosphorylated predominantly at serines 155, 162, and 170. HBV RNA encapsidation, DNA synthesis, and virion secretion are known to be regulated by serine phosphorylation at the ARD domain (9-13).Proteins w...
Enterovirus 71 (EV71) is a major threat to children worldwide. Children infected with EV71 could develop subclinical infection and hand-foot-and -mouth disease (HFMD). In severe cases, patients could develop encephalitis, paralysis, pulmonary edema, and death. A more user-friendly and robust animal model is essential to investigating EV71 pathogenesis. Here, we established a hybrid (hSCARB2+/+/stat-1−/−) mouse strain from crossbreeding SCARB2 transgenic and stat-1 KO mice, and compared the susceptibilities to EV71 infection and pathogenesis between parental and hybrid mice. Virus-encoded VP1 protein can be detected in the streaking nerve fibers in brain and spinal cord. This hybrid mouse strain at 2-week-old age can still be infected with different genotypes of EV71 at 1000-fold lower titer via an ip route. Infected hybrid mice developed earlier onset of CNS disease, paralysis, and death at a higher incidence. These advantages of this novel model meet the urgent need from the scientific community in basic and preclinical research in therapeutics and pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.