Myxomatosis is a lethal disease in wild European and domestic rabbits (Oryctolagus cuniculus), which is caused by a Myxoma virus (MYXV) infection—a leporipoxvirus that is found naturally in some Sylvilagus rabbit species in South America and California. The introduction of MYXV into feral European rabbit populations of Australia and Europe, in the early 1950s, demonstrated the best-documented field example of host–virus coevolution, following a cross-species transmission. Recently, a new cross-species jump of MYXV has been suggested in both Great Britain and Spain, where European brown hares (Lepus europaeus) and Iberian hares (Lepus granatensis) were found dead with lesions consistent with those observed in myxomatosis. To investigate the possibility of a new cross-species transmission event by MYXV, tissue samples collected from a wild Iberian hare found dead in Spain (Toledo region) were analyzed and deep sequenced. Our results reported a new MYXV isolate (MYXV Toledo) in the tissues of this species. The genome of this new virus was found to encode three disruptive genes (M009L, M036L, and M152R) and a novel ~2.8 kb recombinant region, which resulted from an insertion of four novel poxviral genes towards the 3’ end of the negative strand of its genome. From the open reading frames inserted into the MYXV Toledo virus, a new orthologue of a poxvirus host range gene family member was identified, which was related to the MYXV gene M064R. Overall, we confirmed the identity of a new MYXV isolate in Iberian hares, which, we hypothesized, was able to more effectively counteract the host defenses in hares and start an infectious process in this new host.
The innate immunological response in mammals involves a diverse and complex network of many proteins. Over the last years, the tripartite motif-containing protein 5 (TRIM5) and 22 (TRIM22) have shown promise as restriction factors of a plethora of viruses that infect primates. Although there have been studies describing the evolution of these proteins in a wide range of mammals, no prior studies of the TRIM6/34/5/22 gene cluster have been performed in the Chiroptera order. Here, we provide a detailed analysis of the evolution of this gene cluster in several bat genomes. Examination of different yangochiroptera and yinpterochiroptera bat species revealed a dynamic history of gene expansion occurring in TRIM5 and TRIM22 genes. Multiple copies of TRIM5 were found in the genomes of several bats, demonstrating a very low degree of conservation in the synteny of this gene among species of the Chiroptera order. Our findings also reveal that TRIM22 is often found duplicated in yangochiroptera bat species, an evolutionary phenomenon not yet observed in any other lineages of mammals. In total, we identified 31 TRIM5 and 19 TRIM22 amino acids to be evolving under positive selection, with most of the residues being placed in the PRYSPRY domain, known to be responsible for binding to the viral capsid during restriction in the primate orthologous TRIM proteins. Altogether, our results help to shed light on the distinctive role of bats in nature as reservoirs of viruses, many of which have become threatening zoonotic diseases through virus spillover in the last decades.
Programmed cell death is a vital process in the life cycle of organisms. Necroptosis, an evolutionary form of programmed necrosis, contributes to the innate immune response by killing pathogen-infected cells. This virus-host interaction pathway is organized around two components: the receptor-interacting protein kinase 3 (RIPK3), which recruits and phosphorylates the mixed lineage kinase-like protein (MLKL), inducing cellular plasma membrane rupture and cell death. Critically, the presence of necroptotic inhibitors in viral genomes validates necroptosis as an important host defense mechanism. Here, we show, counterintuitively, that in different mammalian lineages, central components of necroptosis, such as RIPK3 and MLKL, are deleted or display inactivating mutations. Frameshifts or premature stop codons are observed in all the studied species of cetaceans and leporids. In carnivores’ genomes, the MLKL gene is deleted, while in a small number of species from afrotheria and rodentia premature stop codons are observed in RIPK3 and/or MLKL. Interestingly, we also found a strong correlation between the disruption of necroptosis in leporids and cetaceans and the absence of the N-terminal domain of E3-like homologs (responsible for necroptosis inhibition) in their naturally infecting poxviruses. Overall, our study provides the first comprehensive picture of the molecular evolution of necroptosis in mammals. The loss of necroptosis multiple times during mammalian evolution highlights the importance of gene/pathway loss for species adaptation and suggests that necroptosis is not required for normal mammalian development. Moreover, this study highlights a co-evolutionary relationship between poxviruses and their hosts, emphasizing the role of host adaptation in shaping virus evolution.
The coevolution of European rabbit populations and MYXV is a textbook example of an arms race between a pathogen and a host. Recently, a recombinant MYXV (MYXV-Tol) crossed the species barrier by jumping from leporid species to another species, causing lethal myxomatosis-like disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.