National Forest Inventories (NFIs) are the primary source of information to fulfill international requirements, such as growing stock volume. However, NFI cycles may be “out of phase” in terms of the information required, so prediction techniques are needed. To disentangle the effects of climate and competition on stand productivity and to estimate the volume of stocks at national scale, it is important to recognize that growth and competition are species-specific and vary along climatic gradients. In this study, we estimate the productivity of five pine species (Pinus sylvestris, Pinus pinea, Pinus halepensis, Pinus nigra and Pinus pinaster), growing in monospecific stands or in mixtures along an aridity gradient in the Iberian Peninsula, based on Spanish NFI data. We study the stand volume growth efficiency (VGE), since it allows the comparison of volume growth in monospecific and mixed stands. The results reveal the importance of considering the aridity when assessing VGE. Moreover, it was found that, in general, admixture among pine species leads to modifications in the VGE, which can vary from negative to positive effects depending on species composition, and that this is always influenced by the aridity. Finally, we provide simple growth efficiency models for the studied pines species which are valid for both monospecific and mixed stands along the aridity gradient of the Iberian Peninsula.
An increasing amount of research is focusing on comparing productivity in monospecific versus mixed stands, although it is difficult to reach a general consensus as mixing effects differ both in sign (over-yielding or under-yielding) and magnitude depending on species composition as well as on site and stand conditions. While long-term experimental plots provide the best option for disentangling the mixing effects, these datasets are not available for all the existing mixtures nor do they cover large gradients of site factors. The objective of this study was to evaluate the effects and uncertainties of tree species mixing on the productivity of Scots pine–European beech stands along the gradient of site conditions in Europe, using models developed from National and Regional Forest Inventory data. We found a positive effect of pine on beech basal area growth, which was slightly greater for the more humid sites. In contrast, beech negatively affected pine basal area growth, although the effects switched to positive in the more humid sites. However, the uncertainty analysis revealed that the effect on pine at mid- and more humid sites was not-significant. Our results agree with studies developed from a European transect of temporal triplets in the same pine–beech mixtures, confirming the suitability of these datasets and methodology for evaluating mixing effects at large scale.
Background
National and international institutions periodically demand information on forest indicators that are used for global reporting. Among other aspects, the carbon accumulated in the biomass of forest species must be reported. For this purpose, one of the main sources of data is the National Forest Inventory (NFI), which together with statistical empirical approaches and updating procedures can even allow annual estimates of the requested indicators.
Methods
Stand level biomass models, relating the dry weight of the biomass with the stand volume were developed for the five main pine species in the Iberian Peninsula (Pinus sylvestris, Pinus pinea, Pinus halepensis, Pinus nigra and Pinus pinaster). The dependence of the model on aridity and/or mean tree size was explored, as well as the importance of including the stand form factor to correct model bias. Furthermore, the capability of the models to estimate forest carbon stocks, updated for a given year, was also analysed.
Results
The strong relationship between stand dry weight biomass and stand volume was modulated by the mean tree size, although the effect varied among the five pine species. Site humidity, measured using the Martonne aridity index, increased the biomass for a given volume in the cases of Pinus sylvestris, Pinus halepensis and Pinus nigra. Models that consider both mean tree size and stand form factor were more accurate and less biased than those that do not. The models developed allow carbon stocks in the main Iberian Peninsula pine forests to be estimated at stand level with biases of less than 0.2 Mg∙ha− 1.
Conclusions
The results of this study reveal the importance of considering variables related with environmental conditions and stand structure when developing stand dry weight biomass models. The described methodology together with the models developed provide a precise tool that can be used for quantifying biomass and carbon stored in the Spanish pine forests in specific years when no field data are available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.