The spatial Durbin model occupies an interesting position in the field of spatial econometrics. It is the reduced form of a model with cross-sectional dependence in the errors and it may be used as the nesting equation in a more general approach of model selection. Specifically, in this equation we obtain the common factor tests (of which the likelihood ratio is the best known) whose objective is to discriminate between substantive and residual dependence in an apparently misspecified equation. Our paper tries to delve deeper into the role of the spatial Durbin model in the problem of specifying a spatial econometric model. We include a Monte Carlo study related to the performance of the common factor tests presented in the paper in small sample sizes.Common factor tests, spatial lag model, spatial error model, C21, C50, R15,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.