We construct several sequences of asymptotically optimal definite quadrature formulae of fourth order and evaluate their error constants. Besides the asymptotical optimality, an advantage of our quadrature formulae is the explicit form of their weights and nodes. For the remainders of our quadrature formulae monotonicity properties are established when the integrand is a 4-convex function, and a-posteriori error estimates are proven.Keywords: Asymptotically optimal definite quadrature formulae, Peano kernel representation, Euler-Maclaurin type summation formulae, a posteriori error estimates 2010 MSC: 41A55, 65D30, 65D32
This article considers heat transfer in a solid body with temperature-dependent thermal conductivity that is in contact with a tank filled with liquid. The liquid in the tank is heated by hot liquid entering the tank through a pipe. Liquid at a lower temperature leaves the tank through another pipe. We propose a one-dimensional mathematical model that consists of a nonlinear PDE for the temperature along the solid body, coupled to a linear ODE for the temperature in the tank, the boundary and the initial conditions. All equations are converted into a dimensionless form reducing the input parameters to three dimensionless numbers and a dimensionless function. A steady-state analysis is performed. To solve the transient problem, a nontrivial numerical approach is proposed whereby the differential equations are first discretized in time. This reduces the problem to a sequence of nonlinear two-point boundary value problems (TPBVP) and a sequence of linear algebraic equations coupled to it. We show that knowing the temperature in the system at time level n − 1 allows us to decouple the TPBVP and the corresponding algebraic equation at time level n. Thus, starting from the initial conditions, the equations are decoupled and solved sequentially. The TPBVPs are solved by FDM with the Newtonian method.
We consider a small object in 3D moving under the influence of a force that may depend explicitly on time, on the position of the object, and on its velocity. The equations of motion of classical mechanics are assumed to hold. If the position of the object is specified at some initial and some final time, obtaining the trajectory of the object requires the solution of a two-point boundary value problem. To solve the problem various numerical technics can be applied. This paper extends the recently proposed shooting-projection method to 3D. We introduce a Lagrangian from which, applying the principle of least action, the projection trajectory is derived. Analysis of the action reveals the meaning of the projection trajectory. Using the shooting-projection method, the considered two-point boundary value problem is solved for the case of a projectile motion in the presence of air resistance and wind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.