The excess of ROS from NAD(P)H Oxidase and/or mitochondria and the increased vascular COX-2/TP receptor axis act in concert to induce vascular dysfunction and hypertension.
BACKGROUND AND PURPOSERegular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). EXPERIMENTAL APPROACHNormotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. KEY RESULTSExercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor L-NAME in vasodilator or vasoconstrictor responses, normalized the increased O2 -production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. CONCLUSIONS AND IMPLICATIONSExercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure.
Abstract-Angiotensin II (Ang II) modulates vasomotor tone, cell growth, and extracellular matrix deposition. This study analyzed the effect of atorvastatin in the possible alterations induced by Ang II on structure and mechanics of mesenteric resistance arteries and the signaling mechanisms involved. Wistar rats were infused with Ang II (100 ng/kg per day, SC minipumps, 2 weeks) with or without atorvastatin (5 mg/kg per day). Ang II increased blood pressure and plasmatic malondialdehyde levels. Compared with controls, mesenteric resistance arteries from Ang II-treated rats showed the following: (1) decreased lumen diameter; (2) increased wall/lumen; (3) decreased number of adventitial, smooth muscle, and endothelial cells; (4) increased stiffness; (5) increased collagen deposition; and (6) diminished fenestrae area and number in the internal elastic lamina. Atorvastatin did not alter blood pressure but reversed all of the structural and mechanical alterations of mesenteric arteries, including collagen and elastin alterations. In mesenteric resistance arteries, Ang II increased vascular O 2 ⅐Ϫ production and diminished endothelial NO synthase and CuZn/superoxide dismutase but did not modify extracellular-superoxide dismutase expression. Atorvastatin improved plasmatic and vascular oxidative stress, normalized endothelial NO synthase and CuZn/superoxide dismutase expression, and increased extracellularsuperoxide dismutase expression, showing antioxidant properties. Atorvastatin also diminished extracellular signalregulated kinase 1/2 activation caused by Ang II in these vessels, indicating an interaction with Ang II-induced intracellular responses. In vascular smooth muscle cells, collagen type I release mediated by Ang II was reduced by different antioxidants and statins. Moreover, atorvastatin downregulated the Ang II-induced NADPH oxidase subunit, Nox1, expression. Our results suggest that statins might exert beneficial effects on hypertension-induced vascular remodeling by improving vascular structure, extracellular matrix alterations, and vascular stiffness. These effects might be mediated by their antioxidant properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.