We report on the radiative and nonradiative deactivation pathways of selected charge states of the stoichiometric hexagold phosphine-stabilized ionic clusters, [(C)(AuDppy)Ag·(BF) ] with x = 2 and 3 (Dppy = diphenylphosphino-2-pyridine), combining gas-phase photoluminescence and photodissociation with quantum chemical computations. These clusters possess an identical isostructural core made of a hyper-coordinated carbon at their center octahedrally surrounded by six gold ions, and two silver ions at their apexes. Their luminescence and fragmentation behavior upon photoexcitation was investigated under mass and charge control in an ion trap. The experimental and computational results shed light on the electronic states involved in the optical transitions as well as on their core, ligand, or charge transfer character. Gas-phase results are discussed in relation with condensed phase measurements, as well as previous observations in solution and on metal-organic frameworks. The monocationic species ( x = 3) is found to be less stable than the dicationic one ( x = 2). In the luminescence spectrum of the monocationic species, a shoulder at short wavelength can be observed and is assigned to fragment emission. This fragment formation appears to be favored for the monocation by the existence of a low lying singlet state energetically overlapping with the triplet state manifold, which is populated quickly after photoexcitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.