Oxygen radicals regulate many physiological processes, such as signaling, proliferation, and apoptosis, and thus play a pivotal role in pathophysiology and disease development. There are at least two thioredoxin reductase/ thioredoxin/peroxiredoxin systems participating in the cellular defense against oxygen radicals. At present, relatively little is known about the contribution of individual enzymes to the redox metabolism in different cell types. To begin to address this question, we generated and characterized mice lacking functional mitochondrial thioredoxin reductase (TrxR2). Ubiquitous Cre-mediated inactivation of TrxR2 is associated with embryonic death at embryonic day 13. TrxR2 ؊/؊ embryos are smaller and severely anemic and show increased apoptosis in the liver. The size of hematopoietic colonies cultured ex vivo is dramatically reduced. TrxR2-deficient embryonic fibroblasts are highly sensitive to endogenous oxygen radicals when glutathione synthesis is inhibited. Besides the defect in hematopoiesis, the ventricular heart wall of TrxR2 ؊/؊ embryos is thinned and proliferation of cardiomyocytes is decreased. Cardiac tissue-restricted ablation of TrxR2 results in fatal dilated cardiomyopathy, a condition reminiscent of that in Keshan disease and Friedreich's ataxia. We conclude that TrxR2 plays a pivotal role in both hematopoiesis and heart function.Reactive oxygen species (ROS)-generated mainly as a byproduct of the respiratory chain or by oxidases-are implicated in the pathogenesis and pathophysiology of a variety of human diseases such as cancer, cardiovascular, and degenerative disorders. A variety of cellular antioxidant systems control the balance of free intra-and extracellular oxygen radicals. Previous efforts have addressed the physiological role of superoxide dismutases, catalases, and glutathione (GSH) peroxidases in vivo, but the role of the thioredoxin/thioredoxin reductase/ peroxiredoxin system in ROS removal has only recently attracted attention.Thioredoxins are small redox-active proteins with an essential function in DNA metabolism and repair, transcription, and cell-cell communication (1). Acting through peroxiredoxins, they also efficiently protect cells from oxidative damage (27). Cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins are required for proliferation and protection from apoptosis during early embryogenesis (26). Moreover, in chicken B cells, Trx2 is critically involved in the regulation of mitochondriondependent apoptosis (37). More recently, heart-specific overexpression of dominant-negative Trx1 was shown to be associated with increased oxidative stress and cardiac hypertrophy in mice (39).Trx activities are governed by thioredoxin reductases (TrxRs) that, in turn, use NADPH/H ϩ as the reducing agent (23). TrxRs are members of the pyridine nucleotide-disulfide oxidoreductase family, form homodimers, and possess two interacting redox-active centers. The C-terminal redox center contains a catalytically important selenocysteine (SeCys) (9,17,41). In mammals, three TrxRs...