In this paper we address the problem of path planning in an unknown environment with an aerial robot. The main goal is to safely follow the planned trajectory by avoiding obstacles. The proposed approach is suitable for aerial vehicles equipped with 3D sensors, such as LiDARs. It performs obstacle avoidance in real time and on an on-board computer. We present a novel algorithm based on the conventional Artificial Potential Field (APF) that corrects the planned trajectory to avoid obstacles. To this end, our modified algorithm uses a rotation-based component to avoid local minima. The smooth trajectory following, achieved with the MPC tracker, allows us to quickly change and re-plan the UAV trajectory. Comparative experiments in simulation have shown that our approach solves local minima problems in trajectory planning and generates more efficient paths to avoid potential collisions with static obstacles compared to the original APF method.
This chapter describes the efforts of the LARICS team in the 2019 European Robotics League (ERL) Emergency Robots and the 2020 Mohamed Bin Zayed International Robotics Challenge (MBZIRC) robotics competitions. We focus on the implementation of hardware and software modules that enable the deployment of aerial-ground robotic teams in unstructured environments for joint missions. In addition to the overall system specification, we outline the main algorithms for operation in such conditions: autonomous exploration of unknown environments and detection of objects of interest. Analysis of the results shows the success of the developed system in the competition arena of two of the largest outdoor robotics challenges. Throughout the chapter, we highlight the evolution of the robotic system based on the experience gained in the ERL competition. We conclude the chapter with key findings and additional improvement ideas to advance the state of the art in search and rescue applications of heterogeneous robotic teams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.