Commercial carbon nanotubes (CNT), oxidized CNT (CNTox) and activated carbon (AC) were used as supports to prepare Ni/C catalysts with a nominal loading of 15 wt%.
This short review aims at providing an overview of the most recent literature regarding transition metal nitrides (TMN) applied in heterogeneous catalysis. These materials have received renewed attention in the last decade due to its potential to substitute noble metals mainly in biomass and energy transformations, the decomposition of ammonia being one of the most studied reactions. The reactions considered in this review are limited to thermal catalysis. However the potential of these materials spreads to other key applications as photo- and electrocatalysis in hydrogen and oxygen evolution reactions. Mono, binary and exceptionally ternary metal nitrides have been synthetized and evaluated as catalysts and, in some cases, promoters are added to the structure in an attempt to improve their catalytic performance. The objective of the latest research is finding new synthesis methods that allow to obtain smaller metal nanoparticles and increase the surface area to improve their activity, selectivity and stability under reaction conditions. After a brief introduction and description of the most employed synthetic methods, the review has been divided in the application of transition metal nitrides in the following reactions: hydrotreatment, oxidation and ammonia synthesis and decomposition.
Commercial carbon nanotubes (CNT), were used as supports to prepare Ni/CNT catalysts with a 15 wt% Ni loading and NiCux/CNT catalysts with Cu loadings of x: 1.5, 2.25, 3.0 and 3.75 wt% were prepared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.