While the retinex theory aimed at explaining human color perception, its derivations have led to efficient algorithms enhancing local image contrast, thus permitting among other features, to "see in the shadows". Among these derived algorithms, Multiscale Retinex is probably the most successful center-surround image filter. In this paper, we offer an analysis and implementation of Multiscale Retinex. We point out and resolve some ambiguities of the method. In particular, we show that the important color correction final step of the method can be seriously improved. This analysis permits to formulate an automatic implementation of Multiscale Retinex which is as faithful as possible to the one described in the original paper. Overall, this implementation delivers excellent results and confirms the validity of Multiscale Retinex for image color restoration and contrast enhancement. Nevertheless, while the method parameters can be fixed, we show that a crucial choice must be left to the user, depending on the lightning condition of the image: the method must either be applied to each color independently if a color balance is required, or to the luminance only if the goal is to achieve local contrast enhancement. Thus, we propose two slightly different algorithms to deal with both cases. Source CodeThe source code, the code documentation, and the online demo are accessible at the IPOL web page of this article 1 . In this link an implementation is available for download. Compilation and usage instruction are included in the README.txt file of the compressed archive. This software includes the implementations of algorithms potentially linkable to patents.
In 1964 Edwin H. Land formulated the Retinex theory, the first attempt to simulate and explain how the human visual system perceives color. His theory and an extension, the "reset Retinex" were further formalized by Land and McCann. Several Retinex algorithms have been developed ever since. These color constancy algorithms modify the RGB values at each pixel to give an estimate of the color sensation without a priori information on the illumination. Unfortunately, the Retinex Land-McCann original algorithm is both complex and not fully specified. Indeed, this algorithm computes at each pixel an average of a very large set of paths on the image. For this reason, Retinex has received several interpretations and implementations which, among other aims, attempt to tune down its excessive complexity. In this paper, it is proved that if the paths are assumed to be symmetric random walks, the Retinex solutions satisfy a discrete screened Poisson equation. This formalization yields an exact and fast implementation using only two FFTs. Several experiments on color images illustrate the effectiveness of the Retinex original theory.
In this work, we propose a method to segment a 1-D histogram without a priori assumptions about the underlying density function. Our approach considers a rigorous definition of an admissible segmentation, avoiding over and under segmentation problems. A fast algorithm leading to such a segmentation is proposed. The approach is tested both with synthetic and real data. An application to the segmentation of written documents is also presented. We shall see that this application requires the detection of very small histogram modes, which can be accurately detected with the proposed method.
In this paper we present the simplest possible color balance algorithm. The assumption underlying this algorithm is that the highest values of R, G, B observed in the image must correspond to white, and the lowest values to obscurity. The algorithm simply stretches, as much as it can, the values of the three channels Red, Green, Blue (R, G, B), so that they occupy the maximal possible range [0, 255] by applying an affine transform ax+b to each channel. Since many images contain a few aberrant pixels that already occupy the 0 and 255 values, the proposed method saturates a small percentage of the pixels with the highest values to 255 and a small percentage of the pixels with the lowest values to 0, before applying the affine transform.
In this work we propose a discussion and detailed implementation of a very simple gradient domain method that tries to eliminate the effect of nonuniform illumination and at the same time preserves the images details. This model, which to the best of our knowledge has not been explored in spite of its simplicity, acts as a high pass filter. We show that with a single contrast parameter (which keeps the same value in most experiments), the model delivers state of the art results. They compare favorably to results obtained with more complex algorithms. Our algorithm is designed for all kinds of images, but with the special specification of making minimal image detail alteration thanks to a first order fidelity term, instead of the usual zero order term. Experiments on non-uniform medical images and on hazy images illustrate significant perception gain. Source Code The source code and the online demo are accessible at the IPOL web page of this article 1. In this link an ANSI C source code is available for download which produces the same results as the demo. Compilation and usage instructions are included in a README.txt file. The online demo allows one to try Screened Poisson Equation on any uploaded image choosing the tradeoff parameter λ and the level of saturation of the simplest color balance s. By default the values of λ and s are 0.0001 and 0.1 respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.