Uplink power control has a strong impact on the performance of mobile communication networks. In this work, an automatic parameter planning algorithm for the standardized power control scheme in the physical uplink shared channel (PUSCH) of long term evolution LTE is proposed. The method is conceived for the network design stage, when network measurements are still not available. The proposed heuristic algorithm can handle irregular scenarios at a low computational complexity. For this purpose, the parameter planning problem in a cell is formulated analytically through the combination of multiple regular scenarios built on a per-adjacency basis. Method assessment is carried out over a static system-level simulator implementing a real scenario. Results show that the proposed method can improve average user throughput and cell-edge user throughput when compared to current vendor approaches, which provide network-wide uniform parameter settings.
This paper presents a statistical characterization of in-vehicle power lines, based on channel measurements carried out in a automobile. In particular, the impact of the engine speed on the characteristics of the channels is analyzed. Performance of an Orthogonal Frequency-Division Multiplexing (OFDM) system is assessed using the channel measurements.
UpLink Power Control (ULPC) is a key radio resource management procedure in mobile networks. In this paper, an analytical model for estimating the impact of increasing the nominal power parameter in the ULPC algorithm for the Physical Uplink Shared CHannel (PUSCH) in Long Term Evolution (LTE) is presented. The aim of the model is to predict the effect of changing the nominal power parameter in a cell on the interference and Signal-to-Interference-plus-Noise Ratio (SINR) of that cell and its neighbors from network statistics. Model assessment is carried out by means of a field trial where the nominal power parameter is increased in some cells of a live LTE network. Results show that the proposed model achieves reasonable estimation accuracy, provided uplink traffic does not change significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.