Background: Animal odor, is one of the most common aroma defects described in the honey odor aroma wheel. It comprises two secondary descriptors: 'fecal' and 'cowshed'. However, the compounds responsible for these honey defects have not been fully identified. In this context, the aim of this work was to identify the compounds responsible for the aromatic defect 'fecal' in Uruguayan honeys by means of gas chromatography coupled to olfactometry (GC-O).Results: Samples of honey described by beekeepers as having fecal aroma were analyzed by GC-O and gas chromatography coupled to mass spectrometry (GC-MS). Through GC-O, it was possible to establish the region of the chromatogram corresponding to the fecal descriptor, while the GC-MS analysis allowed to identify indole as the compound responsible for the fecal descriptor. The content of indole in the analyzed samples ranged between 132 and 414 ∼g kg −1 . The melissopalynological analysis indicated the presence of Scutia buxifolia ('quebracho' or 'coronilla') pollen in all samples studied. The volatile profile of Scutia buxifolia flowers was evaluated during the full day, enabling the identification of indole as one of its components. The detection threshold value for indole in honey was experimentally determined as 64 ∼g kg −1 of honey, a value lower than the concentration found in the evaluated samples.Conclusion: Results from the study allowed the identification of indole as the compound responsible for the 'fecal' aroma defect in Scutia buxifolia honeys.
Propolis samples from north‐west Argentina (Amaicha del Valle, Tucumán) were evaluated by palynology, FT‐IR spectra, and RP‐HPTLC. In addition, the volatile fraction was studied by HS‐SPME‐GC/MS. The botanical species most visited by Apis mellifera L. near the apiaries were collected and their RP‐HPTLC extracts profiles were compared with propolis samples. In addition, GC/MS was performed for volatile compounds from Zuccagnia punctata Cav. (Fabaceae). FT‐IR spectra and RP‐HPTLC fingerprints of propolis samples showed similar profiles. In RP‐HPTLC analyses, only Z. punctata presented a similar fingerprint to Amaicha propolis. The major volatile compounds present in both were trans‐linalool oxide (furanoid), 6‐camphenone, linalool, trans‐pinocarveol, p‐cymen‐8‐ol, and 2,3,6‐trimethylbenzaldehyde. Potential variations for the Amaicha del Valle propolis volatile fraction as consequence of propolis sample preparation were demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.