Abstract:Cancer is a problem of global importance, since the incidence is increasing worldwide and therapeutic options are generally limited. Thus, it becomes imperative to find new therapeutic targets as well as new molecules with therapeutic potential for tumors. Flavonoids are polyphenolic compounds that may be potential therapeutic agents. Several studies have shown that these compounds have a higher anticancer potential. Among the flavonoids in the human diet, quercetin is one of the most important. In the last decades, several anticancer properties of quercetin have been described, such as cell signaling, pro-apoptotic, anti-proliferative and anti-oxidant effects, growth suppression. In fact, it is now well known that quercetin has diverse biological effects, inhibiting multiple enzymes involved in cell proliferation, as well as, in signal transduction pathways. On the other hand, there are also studies reporting potential synergistic effects when combined quercetin with chemotherapeutic agents or radiotherapy. In fact, several studies which aim to explore the anticancer potential of these combined treatments have already been published, the majority with promising results. Actually it is well known that quercetin can act on the chemosensitization and radiosensitization but also as chemoprotective and radioprotective, protecting normal cells of the side effects that results from chemotherapy and radiotherapy, which obviously provides notable advantages in their use in anticancer treatment. Thus, all these data indicate that quercetin may have a key role in anticancer treatment. In this context, this review is focused on the relationship between flavonoids and cancer, with special emphasis on the role of quercetin.
Hepatocellular carcinoma (HCC) is the most common primary liver tumor (PLT), with cholangiocarcinoma (CC) being the second most frequent. Glucose transporter 1 (GLUT-1) expression is increased in PLTs and therefore it is suggested as a therapeutic target. Flavonoids, like quercetin, are GLUT-1 competitive inhibitors and may be considered as potential therapeutic agents for PLTs. The objective of this study was evaluation of quercetin anticancer activity in three human HCC cell lines (HepG2, HuH7, and Hep3B2.1-7) and in a human CC cell line (TFK-1). The possible synergistic effect between quercetin and sorafenib, a nonspecific multikinase inhibitor used in clinical practice in patients with advanced HCC, was also evaluated. It was found that in all the cell lines, quercetin induced inhibition of the metabolic activity and cell death by apoptosis, followed by increase in BAX/BCL-2 ratio. Treatment with quercetin caused DNA damage in HepG2, Hep3B2.1-7, and TFK-1 cell lines. The effect of quercetin appears to be independent of P53. Incubation with quercetin induced an increase in GLUT-1 membrane expression and a consequent reduction in the cytoplasmic fraction, observed as a decrease in (18)F-FDG uptake, indicating a GLUT-1 competitive inhibition. The occurrence of synergy when sorafenib and quercetin were added simultaneously to HCC cell lines was noticed. Thus, the use of quercetin seems to be a promising approach for PLTs through GLUT-1 competitive inhibition.
Cholangiocarcinoma is a rare tumor originating in the bile ducts, which, according to their anatomical location, is classified as intrahepatic, extrahepatic and hilar. Nevertheless, incidence rates have increased markedly in recent decades. With respect to tumor biology, several genetic alterations correlated with resistance to chemotherapy and radiotherapy have been identified. Here, we highlight changes in KRAS and TP53 genes that are normally associated with a more aggressive phenotype. Also IL-6 and some proteins of the BCL-2 family appear to be involved in the resistance that the cholangiocarcinoma presents toward conventional therapies. With regard to diagnosis, tumor markers most commonly used are CEA and CA 19-9, and although its use isolated appears controversial, their combined value has been increasingly advocated. In imaging terms, various methods are needed, such as abdominal ultrasound, computed tomography and cholangiopancreatography. Regarding therapy, surgical modalities are the only ones that offer chance of cure; however, due to late diagnosis, most patients cannot take advantage of them. Thus, the majority of patients are directed to other therapeutic modalities like chemotherapy, which, in this context, assumes a purely palliative role. Thus, it becomes urgent to investigate new therapeutic options for this highly aggressive type of tumor.
Background: Hepatocellular carcinoma (HCC) is the most common primary neoplasm of the liver. A major proportion of HCCs also present mutation of the gene that encodes p53, which confers chemoresistance. The main goal of this work is to investigate the effect of cisplatin, doxorubicin and 5-fluoruracil (5-FU) in three human HCC cell lines which differ in p53 expression. Methods: HepG2 (expressing normal p53), HuH7 (expressing mutated p53) and Hep3B2.1-7 (not expressing p53) cell lines were cultivated in the presence of cisplatin, doxorubicin and 5-FU. Cell proliferation was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT assay). The type of cell death and Bax and Bcl2 activation were assessed by flow cytometry. Results: It was found that for all of the cell lines studied, the agent that gave the most satisfactory results was doxorubicin. 5-FU demonstrated no activity in these cell lines. Conclusions: For all the cell lines studied, doxorubicin was the most satisfactory agent. In HepG2 and HuH7 cell lines, it can activate Bax with statistical significance.
Hepatocellular carcinoma (HCC) is increasingly considered an issue of global importance. Its rates of incidence and mortality have been markedly increasing over the last decades. Among risk factors, some should be highlighted, namely the infections by hepatitis B and C virus, as well as clinical cases of cirrhosis. HCC is characterized as asymptomatic disease in the initial stages which most often leads to a late diagnosis. At molecular and genetic level HCC represents a highly complex tumor entity, including a wide variety of mutations, thus accounting for different mechanisms of resistance towards therapeutic approaches. In particular, mutations of the TP53 gene, as well as a deregulation between the expression of pro- and anti-apoptotic proteins of the BCL-2 family are observed. Regarding treatment modalities, surgical procedures offer the best chance of cure, however, due to a late diagnosis, most of concerned patients cannot be subjected to them. Chemotherapy and radiotherapy are also ineffective, and currently, the treatment with sorafenib is the most commonly used systemic therapy although it can only increase the patient survival for some months. In this sense, a quick and accurate investigation is of utmost importance in order to develop ways of early diagnosis as well as new therapies for HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.